论文标题
关于连续熵的注释
A note on continuous entropy
论文作者
论文摘要
冯·诺伊曼(Von Neumann)的熵具有自然延伸到任意半决赛冯·诺伊曼(Von Neumann)代数的情况,就像I. E. E. Segal所考虑的那样。我们将这种熵与相对熵联系起来,并表明纳米曼因子的熵增加是由琼斯指数的对数界定的。如果因素是无限的维度,则结合是最佳的。
Von Neumann entropy has a natural extension to the case of an arbitrary semifinite von Neumann algebra, as was considered by I. E. Segal. We relate this entropy to the relative entropy and show that the entropy increase for an inclusion of von Neumann factors is bounded by the logarithm of the Jones index. The bound is optimal if the factors are infinite dimensional.