论文标题

POPNET:数据潜伏期的实时人口水平疾病预测

PopNet: Real-Time Population-Level Disease Prediction with Data Latency

论文作者

Gao, Junyi, Xiao, Cao, Glass, Lucas M., Sun, Jimeng

论文摘要

人口水平的疾病预测根据(经常更新的)历史疾病统计,在未来某个地方估计某个位置特定疾病的潜在患者的数量。现有方法通常认为现有的疾病统计数据是可靠的,不会改变。但是,实际上,数据收集通常很耗时,并且有时间延迟,并且历史和当前的疾病统计数据都不断更新。在这项工作中,我们提出了一个实时的人群水平疾病预测模型,该模型捕获数据潜伏期(POPNET),并结合了更新的数据以改进预测。为了实现此目标,PopNet使用两个独立的系统对实时数据进行建模和更新数据,每个系统都使用混合图注意网络和经常性神经网络捕获空间和时间效果。然后,PopNet以端到端的方式使用空间和临时延迟感知的注意力融合了两个系统。我们在现实世界中的疾病数据集上评估了popnet,并表明popnet始终优于所有基线疾病预测和一般的时空预测模型,与最佳碱基相比,较低的均方根误差和较低的平均绝对误差下降高达47%。

Population-level disease prediction estimates the number of potential patients of particular diseases in some location at a future time based on (frequently updated) historical disease statistics. Existing approaches often assume the existing disease statistics are reliable and will not change. However, in practice, data collection is often time-consuming and has time delays, with both historical and current disease statistics being updated continuously. In this work, we propose a real-time population-level disease prediction model which captures data latency (PopNet) and incorporates the updated data for improved predictions. To achieve this goal, PopNet models real-time data and updated data using two separate systems, each capturing spatial and temporal effects using hybrid graph attention networks and recurrent neural networks. PopNet then fuses the two systems using both spatial and temporal latency-aware attentions in an end-to-end manner. We evaluate PopNet on real-world disease datasets and show that PopNet consistently outperforms all baseline disease prediction and general spatial-temporal prediction models, achieving up to 47% lower root mean squared error and 24% lower mean absolute error compared with the best baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源