论文标题
线和表面缺陷的缩放限制
A Scaling Limit for Line and Surface Defects
论文作者
论文摘要
我们研究了威尔逊 - 菲什(Wilson-Fisher)理论中的对称性线路缺陷,$ O(2n+1)$全局对称性在四个维度附近的全局对称性和在$ O(2n)$全局对称性的立方模型中,在六个维度附近。我们引入了一个受共形场理论中大电荷扩展启发的缩放极限。使用此功能,我们计算缺陷耦合的beta函数,该功能允许识别相应的缺陷共形场理论。我们还计算了两个平行缺陷的相关函数以及在幸存的对称性下具有大电荷的某些缺陷算子的相关函数。
We study symmetry-breaking line defects in the Wilson-Fisher theory with $O(2N+1)$ global symmetry near four dimensions and symmetry-preserving surface defects in a cubic model with $O(2N)$ global symmetry near six dimensions. We introduce a scaling limit inspired by the large charge expansion in Conformal Field Theory. Using this, we compute the beta function for the defect coupling which allows to identify the corresponding Defect Conformal Field Theories. We also compute the correlation function of two parallel defects as well as correlation functions of certain defect operators with large charge under the surviving symmetry.