论文标题
资源边缘问题
Resource Marginal Problems
论文作者
论文摘要
我们介绍了资源边缘问题,这些问题涉及与给定的边际密度矩阵集合兼容的无资源目标子系统的可能性。通过确定资源R和目标子系统t的适当选择,我们的问题分别减少了量子状态的众所周知的边际问题以及确定给定量子系统是否为资源的问题。更普遍地,我们说,如果所有与该集合的全球状态兼容,则一组边缘状态与目标子系统t不符,必须导致R的机智状态。我们表明,这种不兼容性可以通过单调来量化这种不相容的资源理论,并可以单位蛋白并获得该单调的必要条件,以使该单一单调可与ConiC Optim a Optim conitientim conitifiens进行计算。我们通过相应的证人进一步表明,(1)无资源的不兼容性等于某些渠道 - 歧视任务中的操作优势,以及(2)此类任务的某些具体案例充分表征了表现出具有资源无资源不相容性的边际密度矩阵之间的可转换性。通过我们的框架,人们看到了量子状态的任何边际问题之间的明确联系 - 隐含的涉及一些不兼容的概念,而量子状态的资源理论则存在。我们还建立了资源边缘问题的物理相关性与某些多体汉密尔顿人的基态特性之间的紧密联系。在应用方面,例如,我们的框架的普遍性导致了对与最近提出的纠缠边缘问题和纠缠传递性问题相关的不兼容性的进一步定量理解。
We introduce the resource marginal problems, which concern the possibility of having a resource-free target subsystem compatible with a given collection of marginal density matrices. By identifying an appropriate choice of resource R and target subsystem T, our problems reduce, respectively, to the well-known marginal problems for quantum states and the problem of determining if a given quantum system is a resource. More generally, we say that a set of marginal states is resource-free incompatible with a target subsystem T if all global states compatible with this set must result in a resourceful state in T of type R. We show that this incompatibility induces a resource theory that can be quantified by a monotone and obtain necessary and sufficient conditions for this monotone to be computable as a conic program with finite optimum. We further show, via the corresponding witnesses, that (1) resource-free incompatibility is equivalent to an operational advantage in some channel-discrimination tasks, and (2) some specific cases of such tasks fully characterize the convertibility between marginal density matrices exhibiting resource-free incompatibility. Through our framework, one sees a clear connection between any marginal problem -- which implicitly involves some notion of incompatibility -- for quantum states and a resource theory for quantum states. We also establish a close connection between the physical relevance of resource marginal problems and the ground state properties of certain many-body Hamiltonians. In terms of application, the universality of our framework leads, for example, to a further quantitative understanding of the incompatibility associated with the recently-proposed entanglement marginal problems and entanglement transitivity problems.