论文标题
矿工:多尺度隐式神经表示
MINER: Multiscale Implicit Neural Representations
论文作者
论文摘要
我们引入了一种新的神经信号模型,设计用于有效的大型信号的高分辨率表示。我们的多尺度隐式神经表示(Miner)中的关键创新是通过Laplacian金字塔的内部表示,它提供了信号的稀疏多尺度分解,该信号捕获了跨尺度的信号的正交部分。我们通过用小MLP在每个尺度上代表金字塔的小差异斑块来利用拉普拉斯金字塔的优势。这使网络能够自适应地从粗尺度增加到细尺度,仅代表具有强信号能量的信号的一部分。每个MLP的参数是从粗到细节优化的,从而在更粗糙的尺度下更快地近似,因此最终是一个非常快速的训练过程。我们将矿工应用于一系列大规模信号表示任务,包括吉吉像素图像和非常大的点云,并证明它需要少于参数的不到25%,33%的内存足迹和10%的竞争技术计算时间(例如Acorn)才能达到相同的表示的准确性。
We introduce a new neural signal model designed for efficient high-resolution representation of large-scale signals. The key innovation in our multiscale implicit neural representation (MINER) is an internal representation via a Laplacian pyramid, which provides a sparse multiscale decomposition of the signal that captures orthogonal parts of the signal across scales. We leverage the advantages of the Laplacian pyramid by representing small disjoint patches of the pyramid at each scale with a small MLP. This enables the capacity of the network to adaptively increase from coarse to fine scales, and only represent parts of the signal with strong signal energy. The parameters of each MLP are optimized from coarse-to-fine scale which results in faster approximations at coarser scales, thereby ultimately an extremely fast training process. We apply MINER to a range of large-scale signal representation tasks, including gigapixel images and very large point clouds, and demonstrate that it requires fewer than 25% of the parameters, 33% of the memory footprint, and 10% of the computation time of competing techniques such as ACORN to reach the same representation accuracy.