论文标题

通过完全耦合的直接数值模拟重新访问风波生长

Revisiting wind wave growth with fully-coupled direct numerical simulations

论文作者

Wu, Jiarong, Popinet, Stéphane, Deike, Luc

论文摘要

我们通过求解两个相纳维尔 - 斯托克斯方程的直接数值模拟来研究风波生长。我们认为波速$ c $与风摩擦速度的比率$ u _*$从$ c/u _*= $ 2到8,即在慢速至中间波浪状态下;和初始波浪陡度$ ak $从0.1到0.3;两者独立变化。湍流的风与行进,几乎单色波是完全耦合的,没有任何子网格尺度模型。新颖的完全耦合方法捕获了波振幅和形状的同时演变,以及水下边界层(漂移电流),直至波动。根据时间依赖性RMS表面高度计算得出的波能生长与根据提取的表面压力分布计算的定量一致,这证实了压力强迫对有限振幅重力波的主要作用。有系统地报道了表面压力分布的主要表面压力分布模式的幅度,以提供可能风波生长理论的直接证据。对于动量和能量通量,我们发现波形拖曳力不是波动年龄的强大功能,而是与波浪陡度密切相关。 RMS陡度和波形阻力的时间演变表明,风波耦合的历史存在影响。我们获得的归一化波长速率与以前的实验和数值研究一致。我们努力阐明各种常用的基本假设,并调和不同以前的理论,数值和实验结果之间的数据散射,因为我们通过新的数值证据重新审视了这个长期存在的问题。

We investigate wind wave growth by direct numerical simulations solving for the two phase Navier-Stokes equations. We consider ratio of the wave speed $c$ to wind friction velocity $u_*$ from $c/u_*=$ 2 to 8, i.e. in the slow to intermediate wave regime; and initial wave steepness $ak$ from 0.1 to 0.3; the two being varied independently. The turbulent wind and the travelling, nearly monochromatic waves are fully coupled without any subgrid scale models. The novel fully-coupled approach captures the simultaneous evolution of the wave amplitude and shape, together with the underwater boundary layer (drift current), up to wave breaking. The wave energy growth computed from the time-dependent rms surface elevation is in quantitative agreement with that computed from the extracted surface pressure distribution, which confirms the leading role of the pressure forcing for finite amplitude gravity waves. The phase shift and the amplitude of the principal mode of surface pressure distribution are systematically reported, to provide direct evidence for possible wind wave growth theories. For the momentum and energy fluxes, we find that the wave form drag force is not a strong function of wave age but closely related to wave steepness. The time evolution of the rms steepness and the wave form drag suggests that there is an effect of the history of wind wave coupling. The normalised wave growth rate we obtain agrees with previous experimental and numerical studies. We make an effort to clarify various commonly-adopted underlying assumptions, and to reconcile the scattering of the data between different previous theoretical, numerical, and experimental results, as we revisit this longstanding problem with new numerical evidence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源