论文标题

与无向神经网络的建模结构

Modeling Structure with Undirected Neural Networks

论文作者

Mihaylova, Tsvetomila, Niculae, Vlad, Martins, André F. T.

论文摘要

神经网络是强大的功能估计器,导致其作为建模结构化数据的首选范式的地位。但是,与其他强调问题模块化的结构化表示不同,例如因子图 - 神经网络通常是从输入到输出的单片映射,并具有固定的计算顺序。这种限制阻止了他们捕获建模变量之间的不同计算方向和相互作用。 在本文中,我们结合了因子图和神经网络的代表性强度,提出了无向神经网络(UNNS):一个灵活的框架,用于指定可以按任何顺序执行的计算。对于特定的选择,我们提出的模型集成并扩展了许多现有的架构:馈送,经常性,自我发项式网络,自动编码器和具有隐式层的网络。我们在一系列任务上证明了非指导神经体系结构的有效性:受树约束依赖性解析,卷积图像分类和序列完成。通过改变计算顺序,我们展示了如何同时将单个UNN用作分类器和原型生成器,以及如何填充输入序列的缺失部分,从而使它们成为进一步研究的有希望的领域。

Neural networks are powerful function estimators, leading to their status as a paradigm of choice for modeling structured data. However, unlike other structured representations that emphasize the modularity of the problem -- e.g., factor graphs -- neural networks are usually monolithic mappings from inputs to outputs, with a fixed computation order. This limitation prevents them from capturing different directions of computation and interaction between the modeled variables. In this paper, we combine the representational strengths of factor graphs and of neural networks, proposing undirected neural networks (UNNs): a flexible framework for specifying computations that can be performed in any order. For particular choices, our proposed models subsume and extend many existing architectures: feed-forward, recurrent, self-attention networks, auto-encoders, and networks with implicit layers. We demonstrate the effectiveness of undirected neural architectures, both unstructured and structured, on a range of tasks: tree-constrained dependency parsing, convolutional image classification, and sequence completion with attention. By varying the computation order, we show how a single UNN can be used both as a classifier and a prototype generator, and how it can fill in missing parts of an input sequence, making them a promising field for further research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源