论文标题
各向异性核的非局部毛细血管
Nonlocal capillarity for anisotropic kernels
论文作者
论文摘要
我们研究了可能是各向异性且不一定在缩放下不一定不变的相互作用内核的非局部毛细血管问题。 特别是,缺乏比例不变性将通过两个不同的分数指数$ s_1,s_2 \ in(0,1)$建模,这些指数考虑到容器和环境在粒子相互作用方面具有不同特征的可能性。 我们根据相互作用内核和相对粘附系数确定了接触角的非本地Young定律,并讨论相应方程的独特可溶性。
We study a nonlocal capillarity problem with interaction kernels that are possibly anisotropic and not necessarily invariant under scaling. In particular, the lack of scale invariance will be modeled via two different fractional exponents $s_1, s_2\in (0,1)$ which take into account the possibility that the container and the environment present different features with respect to particle interactions. We determine a nonlocal Young's law for the contact angle and discuss the unique solvability of the corresponding equation in terms of the interaction kernels and of the relative adhesion coefficient.