论文标题

GraphDCA-真实和合成图中节点分布比较的框架

GraphDCA -- a Framework for Node Distribution Comparison in Real and Synthetic Graphs

论文作者

Ceylan, Ciwan, Poklukar, Petra, Hultin, Hanna, Kravchenko, Alexander, Varava, Anastasia, Kragic, Danica

论文摘要

我们认为,在比较两个图时,节​​点结构特征的分布比经常用于实践中的全局图统计信息更具信息性,尤其是用于评估图生成模型。因此,我们提出了GraphDCA-基于其各自的节点表示集的比对来评估图形之间相似性的框架。使用最近提出的用于比较表示空间的方法(称为Delaunay组件分析(DCA))进行比较,我们将其扩展到图形数据。为了评估我们的框架,我们生成了一个表现出不同结构模式的图表的基准数据集,并使用三个节点结构特征提取器显示,该图形识别具有相似局部结构和不同局部结构的图形。然后,我们应用我们的框架来评估三个公开可用的现实世界图数据集,并使用逐渐的边缘扰动演示,与全球统计信息不同,图形逐渐捕获了令人满意的捕获逐渐降低相似性。最后,我们使用GraphDCA评估两个最先进的图形生成模型Netgan和Cell,并得出结论,这些模型需要进一步改进,以充分重现局部结构特征。

We argue that when comparing two graphs, the distribution of node structural features is more informative than global graph statistics which are often used in practice, especially to evaluate graph generative models. Thus, we present GraphDCA - a framework for evaluating similarity between graphs based on the alignment of their respective node representation sets. The sets are compared using a recently proposed method for comparing representation spaces, called Delaunay Component Analysis (DCA), which we extend to graph data. To evaluate our framework, we generate a benchmark dataset of graphs exhibiting different structural patterns and show, using three node structure feature extractors, that GraphDCA recognizes graphs with both similar and dissimilar local structure. We then apply our framework to evaluate three publicly available real-world graph datasets and demonstrate, using gradual edge perturbations, that GraphDCA satisfyingly captures gradually decreasing similarity, unlike global statistics. Finally, we use GraphDCA to evaluate two state-of-the-art graph generative models, NetGAN and CELL, and conclude that further improvements are needed for these models to adequately reproduce local structural features.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源