论文标题

HALS:一个高度感知的LIDAR超分辨率框架用于自动驾驶

HALS: A Height-Aware Lidar Super-Resolution Framework for Autonomous Driving

论文作者

Eskandar, George, Sudarsan, Sanjeev, Guirguis, Karim, Palaniswamy, Janaranjani, Somashekar, Bharath, Yang, Bin

论文摘要

激光雷达传感器对于理解自动驾驶中的3D环境至关重要。高分辨率传感器提供了有关周围环境的更多详细信息,因为它们包含更多的垂直梁,但是它们的成本要高得多,从而限制了它们包含在自动驾驶中。提高LIDAR PointClouds是一种有前途的方法,可以在保持负担得起的成本的同时获得高分辨率的好处。尽管存在许多PointCloud UPSMPLING框架,但仍然缺少使用统一指标在同一数据集上对这些作品相互对立的一致比较。在本文的第一部分中,我们建议在Kitti数据集上基准现有方法。在第二部分中,我们介绍了一种新颖的LiDAR UPS采样模型HALS:Height-Ian Heighta Iance LiDAR超分辨率。 HALS利用了LiDAR扫描表现出高度感知范围的分布的观察结果,并采用了具有不同接收场的多个上采样分支的发电机结构。 HALS回归极坐标,而不是球形坐标,并使用表面正常损失。广泛的实验表明,HALS在3个现实世界Lidar数据集上实现了最先进的性能。

Lidar sensors are costly yet critical for understanding the 3D environment in autonomous driving. High-resolution sensors provide more details about the surroundings because they contain more vertical beams, but they come at a much higher cost, limiting their inclusion in autonomous vehicles. Upsampling lidar pointclouds is a promising approach to gain the benefits of high resolution while maintaining an affordable cost. Although there exist many pointcloud upsampling frameworks, a consistent comparison of these works against each other on the same dataset using unified metrics is still missing. In the first part of this paper, we propose to benchmark existing methods on the Kitti dataset. In the second part, we introduce a novel lidar upsampling model, HALS: Height-Aware Lidar Super-resolution. HALS exploits the observation that lidar scans exhibit a height-aware range distribution and adopts a generator architecture with multiple upsampling branches of different receptive fields. HALS regresses polar coordinates instead of spherical coordinates and uses a surface-normal loss. Extensive experiments show that HALS achieves state-of-the-art performance on 3 real-world lidar datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源