论文标题

不确定性建模,用于分布概括

Uncertainty Modeling for Out-of-Distribution Generalization

论文作者

Li, Xiaotong, Dai, Yongxing, Ge, Yixiao, Liu, Jun, Shan, Ying, Duan, Ling-Yu

论文摘要

尽管在各种视觉任务中取得了显着的进展,但在分布外情景中进行测试时,深层神经网络仍然遭受明显的性能降解。我们认为,可以正确操纵具有培训数据的领域特征的特征统计(平均值和标准偏差),以提高深度学习模型的概括能力。常见方法通常将特征统计量视为从学习的特征中测量的确定性值,并且没有明确考虑测试过程中潜在域移动引起的不确定统计差异。在本文中,我们通过在训练过程中使用合成特征统计的域移动不确定性来建模域转移的不确定性来提高网络的概括能力。具体而言,我们假设特征统计量在考虑了潜在的不确定性之后,遵循多元高斯分布。因此,每个特征统计量不再是确定性值,而是具有不同分布可能性的概率点。有了不确定的特征统计,可以训练模型来减轻域扰动并在潜在的域移动方面获得更好的鲁棒性。我们的方法可以很容易地集成到没有其他参数的情况下。广泛的实验表明,我们提出的方法一致地提高了多个视觉任务的网络概括能力,包括图像分类,语义分割和实例检索。该代码可以在https://github.com/lixiaotong97/dsu上找到。

Though remarkable progress has been achieved in various vision tasks, deep neural networks still suffer obvious performance degradation when tested in out-of-distribution scenarios. We argue that the feature statistics (mean and standard deviation), which carry the domain characteristics of the training data, can be properly manipulated to improve the generalization ability of deep learning models. Common methods often consider the feature statistics as deterministic values measured from the learned features and do not explicitly consider the uncertain statistics discrepancy caused by potential domain shifts during testing. In this paper, we improve the network generalization ability by modeling the uncertainty of domain shifts with synthesized feature statistics during training. Specifically, we hypothesize that the feature statistic, after considering the potential uncertainties, follows a multivariate Gaussian distribution. Hence, each feature statistic is no longer a deterministic value, but a probabilistic point with diverse distribution possibilities. With the uncertain feature statistics, the models can be trained to alleviate the domain perturbations and achieve better robustness against potential domain shifts. Our method can be readily integrated into networks without additional parameters. Extensive experiments demonstrate that our proposed method consistently improves the network generalization ability on multiple vision tasks, including image classification, semantic segmentation, and instance retrieval. The code can be available at https://github.com/lixiaotong97/DSU.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源