论文标题
特征形式的傅立叶系数
Coprimality of Fourier coefficients of eigenforms
论文作者
论文摘要
给定一对具有整数傅立叶系数$ a_1(n)$和$ a_2(n)$的不同CM标准化的特征形式,我们将正整数$ n $与$(a_1(n),a_2(n),a_2(n))= 1 = 1 $计数,并对$ p $ p $ p $ p $(a_1 = a_1 = a_1(p)a_1(p)(p)(p),a_1(p),a_1(p),a_1(p),a_1(p),a_1 $ p),a_1(p)。我们还研究了$(A_1(P),A_2(P))$的Prime除数的平均顺序。
Given a pair of distinct non-CM normalized eigenforms having integer Fourier coefficients $a_1 (n)$ and $a_2(n)$, we count positive integers $n$ with $(a_1(n), a_2(n))=1$ and make a conjecture about the density of the set of primes $p$ for which $(a_1(p), a_2(p))=1$. We also study the average order of the number of prime divisors of $(a_1(p), a_2(p))$.