论文标题

私人:保留隐私公平的图书馆审核

PrivFair: a Library for Privacy-Preserving Fairness Auditing

论文作者

Pentyala, Sikha, Melanson, David, De Cock, Martine, Farnadi, Golnoosh

论文摘要

机器学习(ML)在直接影响人们生活质量(包括医疗保健,正义和金融)的应用中变得突出。已经发现ML模型根据性别,种族或残疾等敏感属性表现出歧视。评估ML模型是否没有偏见仍然具有挑战性,根据定义,必须使用敏感的用户特征来完成反歧视和数据保护法的敏感用户特征。现有的ML模型审核公平审核的库提供了保护审计数据隐私的机制。我们介绍了ML模型的隐私公平审核的私人库。通过使用安全的多方计算(MPC),Prepfair可以保护该模型在审核下的机密性和用于审核的敏感数据,因此它支持公司拥有的专有分类器的场景,其中使用外部调查员的敏感审核数据对公司拥有的专有分类器进行了审核。我们证明了使用Privfair用于使用表格数据或图像数据进行团体公平审核的使用,而无需调查人员以未加密的方式向任何人披露其数据,或者模型所有者向任何人透露其模型参数。

Machine learning (ML) has become prominent in applications that directly affect people's quality of life, including in healthcare, justice, and finance. ML models have been found to exhibit discrimination based on sensitive attributes such as gender, race, or disability. Assessing if an ML model is free of bias remains challenging to date, and by definition has to be done with sensitive user characteristics that are subject of anti-discrimination and data protection law. Existing libraries for fairness auditing of ML models offer no mechanism to protect the privacy of the audit data. We present PrivFair, a library for privacy-preserving fairness audits of ML models. Through the use of Secure Multiparty Computation (MPC), PrivFair protects the confidentiality of the model under audit and the sensitive data used for the audit, hence it supports scenarios in which a proprietary classifier owned by a company is audited using sensitive audit data from an external investigator. We demonstrate the use of PrivFair for group fairness auditing with tabular data or image data, without requiring the investigator to disclose their data to anyone in an unencrypted manner, or the model owner to reveal their model parameters to anyone in plaintext.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源