论文标题

LVS参数t

The LVS Parametric Tadpole Constraint

论文作者

Gao, Xin, Hebecker, Arthur, Schreyer, Simon, Venken, Victoria

论文摘要

IIB字符串类型的Sitter压缩的大容量场景(LVS)至少在原则上受到了各种未知校正的保护。原因是,通过构造,卡拉比YAU的体积呈指数级。但是,正如最近强调的那样,实际上,最明确的模型却在参数控制的边界上。我们从参数上识别并量化了我们认为这是这种困难背后的主要问题。也就是说,很大一部分意味着最小的广告,因此很小的隆起。后者,如果它依赖于喉咙中的抗D3,则需要大的负负t。作为我们的主要结果,我们为控制最危险的校正提供了一个简单明了的公式。基本要素是指定所需控制质量的参数。我们对约束与t刺猜想之间的相互作用发表评论。我们还讨论了未来工作的方向,这可能会导致LVS结构满足t -tadpole限制,并以更好的控制以及LVS可能存在的进一步挑战。然后,我们的公式代表了对未来搜索和对相关几何形状的理解的非常具体的挑战。

The large volume scenario (LVS) for de Sitter compactifications of the type IIB string is, at least in principle, well protected from various unknown corrections. The reason is that, by construction, the Calabi-Yau volume is exponentially large. However, as has recently been emphasised, in practice the most explicit models are rather on the border of parametric control. We identify and quantify parametrically what we believe to be the main issue behind this difficulty. Namely, a large volume implies a shallow AdS minimum and hence a small uplift. The latter, if it relies on an anti-D3 in a throat, requires a large negative tadpole. As our main result, we provide a simple and explicit formula for what this tadpole has to be in order to control the most dangerous corrections. The fundamental ingredients are parameters specifying the desired quality of control. We comment on the interplay between our constraint and the tadpole conjecture. We also discuss directions for future work which could lead to LVS constructions satisfying the tadpole constraint with better control, as well as further challenges that may exist for the LVS. Our formula then represents a very concrete challenge for future searches for and the understanding of relevant geometries.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源