论文标题

机器学习在异质的多孔材料中

Machine Learning in Heterogeneous Porous Materials

论文作者

D'Elia, Marta, Deng, Hang, Fraces, Cedric, Garikipati, Krishna, Graham-Brady, Lori, Howard, Amanda, Karniadakis, George, Keshavarzzadeh, Vahid, Kirby, Robert M., Kutz, Nathan, Li, Chunhui, Liu, Xing, Lu, Hannah, Newell, Pania, O'Malley, Daniel, Prodanovic, Masa, Srinivasan, Gowri, Tartakovsky, Alexandre, Tartakovsky, Daniel M., Tchelepi, Hamdi, Vazic, Bozo, Viswanathan, Hari, Yoon, Hongkyu, Zarzycki, Piotr

论文摘要

“异质多孔材料中的机器学习研讨会”将用于应用数学,多孔媒体和材料科学的国际科学社区与异质材料领域,机器学习(ML)和应用数学领域的专家组成,以确定ML如何推进材料研究。在ML和材料研究的范围内,研讨会的目的是讨论每个社区的最先进,促进串扰并加快多学科合作研究,并确定挑战和机会。作为最终结果,确定了四个主题领域:预测材料特性的ML,新颖材料的发现和设计,多孔和破裂的培养基中的ML以及与时间相关的现象,通过ML的多孔材料中的多尺度建模,以及材料构成法律的发现和新的概述方程。该研讨会是由美国国家科学,工程与医学学院以及美国国家理论和应用机械师委员会赞助的Amerimech研讨会系列的一部分。

The "Workshop on Machine learning in heterogeneous porous materials" brought together international scientific communities of applied mathematics, porous media, and material sciences with experts in the areas of heterogeneous materials, machine learning (ML) and applied mathematics to identify how ML can advance materials research. Within the scope of ML and materials research, the goal of the workshop was to discuss the state-of-the-art in each community, promote crosstalk and accelerate multi-disciplinary collaborative research, and identify challenges and opportunities. As the end result, four topic areas were identified: ML in predicting materials properties, and discovery and design of novel materials, ML in porous and fractured media and time-dependent phenomena, Multi-scale modeling in heterogeneous porous materials via ML, and Discovery of materials constitutive laws and new governing equations. This workshop was part of the AmeriMech Symposium series sponsored by the National Academies of Sciences, Engineering and Medicine and the U.S. National Committee on Theoretical and Applied Mechanics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源