论文标题
参数t-stochastic邻居与量子神经网络嵌入
Parametric t-Stochastic Neighbor Embedding With Quantum Neural Network
论文作者
论文摘要
T-Stochastic邻居嵌入(T-SNE)是经典机器学习中的一种非参数数据可视化方法。它将数据从高维空间映射到一个低维空间,尤其是二维平面,同时保持周围点之间的关系或相似性。在T-SNE中,低维数据的初始位置是随机确定的,并且通过移动低维数据以最小化成本函数来实现可视化。其称为参数T-SNE的变体使用神经网络进行此映射。在本文中,我们建议将量子神经网络用于参数T-SNE,以反映低维数据上高维量子数据的特征。我们在计算高维数据相似性时使用基于保真度的指标而不是欧几里得距离。我们可以将古典(IRIS数据集)和量子(耗时的哈密顿动力学)数据可视化,以进行分类任务。由于这种方法使我们能够通过较低维度的量子数据集在更高维的希尔伯特空间中表示量子数据集,同时保持其相似性,因此建议的方法还可以用于压缩量子数据以进行进一步的量子机器学习。
t-Stochastic Neighbor Embedding (t-SNE) is a non-parametric data visualization method in classical machine learning. It maps the data from the high-dimensional space into a low-dimensional space, especially a two-dimensional plane, while maintaining the relationship, or similarities, between the surrounding points. In t-SNE, the initial position of the low-dimensional data is randomly determined, and the visualization is achieved by moving the low-dimensional data to minimize a cost function. Its variant called parametric t-SNE uses neural networks for this mapping. In this paper, we propose to use quantum neural networks for parametric t-SNE to reflect the characteristics of high-dimensional quantum data on low-dimensional data. We use fidelity-based metrics instead of Euclidean distance in calculating high-dimensional data similarity. We visualize both classical (Iris dataset) and quantum (time-depending Hamiltonian dynamics) data for classification tasks. Since this method allows us to represent a quantum dataset in a higher dimensional Hilbert space by a quantum dataset in a lower dimension while keeping their similarity, the proposed method can also be used to compress quantum data for further quantum machine learning.