论文标题

基于伴随节点的形状优化自由浮动容器

Adjoint Node-Based Shape Optimization of Free Floating Vessels

论文作者

Kühl, Niklas, Nguyen, Thanh Tung, Palm, Michael, Jürgens, Dirk, Rung, Thomas

论文摘要

该论文涉及基于节点的,梯度驱动的,连续的两相流程,以优化自由浮动容器的形状并讨论三个主题。首先,我们的目的是传达Cahn-Hilliard配方的要素应增加经常使用的流体量的两相流量模型,以保持双重一致性。可以看出,这种一致性是在巨大的雷诺和弗洛德数字上实用应用中稳健的原始/伴随耦合的基础。第二个主题涵盖了不同的伴侣耦合策略。应用程序的一个主要方面是浮动位置,尤其是装饰和下沉,与形状更新引起的流体动力载荷变化相互作用。其他主题提到的是所需的密度耦合水平,以及湍流的更直接(但非冻结)的伴随处理。第三部分讨论了基于节点的环境中下降方向的计算。我们将说明同时变形的体积网格和船体形状的手段,同时遵守该容器的位移及其扩展的技术约束。 Hilbert-Space方法使用计算流体动力学算法的已建立的编码基础架构提供了平滑的形状更新,并提供了管理其他技术约束的访问权限。验证和验证从淹没的2D缸体情况下进行。该应用程序包括RE = 3E+08和FN = 0.37的全尺寸离岸供应船。结果表明,完全平行的过程可以根据考虑的耦合和浮动方面自动将已经预先优化形状的拖动减少9-13。

The paper is concerned with a node-based, gradient-driven, continuous adjoint two-phase flow procedure to optimize the shapes of free-floating vessels and discusses three topics. First, we aim to convey that elements of a Cahn-Hilliard formulation should augment the frequently employed Volume-of-Fluid two-phase flow model to maintain dual consistency. It is seen that such consistency serves as the basis for a robust primal/adjoint coupling in practical applications at huge Reynolds and Froude numbers. The second topic covers different adjoint coupling strategies. A central aspect of the application is the floating position, particularly the trim and the sinkage, that interact with a variation of hydrodynamic loads induced by the shape updates. Other topics addressed refer to the required level of density coupling and a more straightforward -- yet non-frozen -- adjoint treatment of turbulence. The third part discusses the computation of a descent direction within a node-based environment. We will illustrate means to deform both the volume mesh and the hull shape simultaneously and at the same time obey technical constraints on the vessel's displacement and its extensions. The Hilbert-space approach provides smooth shape updates using the established coding infrastructure of a computational fluid dynamics algorithm and provides access to managing additional technical constraints. Verification and validation follow from a submerged 2D cylinder case. The application includes a full-scale offshore supply vessel at Re=3E+08 and Fn=0.37. Results illustrate that the fully parallel procedure can automatically reduce the drag of an already pre-optimized shape by 9-13 within approximately O(10.000-30.000) CPUh depending on the considered couplings and floatation aspects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源