论文标题

基于神经网络的有效腹腔镜视频质量评估的框架

A Neural Network based Framework for Effective Laparoscopic Video Quality Assessment

论文作者

Khan, Zohaib Amjad, Beghdadi, Azeddine, Kaaniche, Mounir, Cheikh, Faouzi Alaya, Gharbi, Osama

论文摘要

视频质量评估是一个具有挑战性的问题,在医学成像的背景下具有重要意义。例如,在腹腔镜手术中,获得的视频数据遭受了不同类型的失真,这些失真不仅会阻碍手术性能,而且会影响手术导航和机器人手术中后续任务的执行。因此,我们在本文中提出了基于神经网络的基于失真分类和质量预测的方法。更确切地说,基于残差网络(RESNET)方法首先是针对同时排名和分类任务开发的。然后,通过使用附加完全连接的神经网络(FCNN),扩展了该体系结构,使其适合于质量预测任务。为了培训整体体系结构(Resnet和FCNN模型),研究了转移学习和端到端学习方法。在新的腹腔镜视频质量数据库上进行的实验结果表明,与最近的常规和深度学习方法相比,所提出的方法的效率。

Video quality assessment is a challenging problem having a critical significance in the context of medical imaging. For instance, in laparoscopic surgery, the acquired video data suffers from different kinds of distortion that not only hinder surgery performance but also affect the execution of subsequent tasks in surgical navigation and robotic surgeries. For this reason, we propose in this paper neural network-based approaches for distortion classification as well as quality prediction. More precisely, a Residual Network (ResNet) based approach is firstly developed for simultaneous ranking and classification task. Then, this architecture is extended to make it appropriate for the quality prediction task by using an additional Fully Connected Neural Network (FCNN). To train the overall architecture (ResNet and FCNN models), transfer learning and end-to-end learning approaches are investigated. Experimental results, carried out on a new laparoscopic video quality database, have shown the efficiency of the proposed methods compared to recent conventional and deep learning based approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源