论文标题
没有地图的最短路径,但带有熵正常器
Shortest Paths without a Map, but with an Entropic Regularizer
论文作者
论文摘要
在1989年的题为“没有地图的最短路径”的论文中,Papadimitriou和Yannakakis引入了一个在线搜索的在线模型,以加权分层图的目标节点,同时试图最大程度地减少搜索者所经历的路径的总长度。此问题后来称为分层图遍历,由输入图的一层的最大基数$ k $参数化。它是用于动态编程的在线设置,众所周知,它是在线计算的相当通用和基本的模型,其中包括特殊情况其他著名模型。此问题的确定性竞争比率很快被发现为$ k $,现在几乎可以解决:它位于$ω(2^k)$和$ o(k2^k)$之间。关于随机竞争比率,在1993年,拉梅什(Ramesh)出人意料地证明,该比率必须至少为$ω(k^2 / \ log^{1+ε} k)$(对于任何常数$ε> 0 $)。在同一篇论文中,Ramesh还给出了$ O(k^{13})$ - 竞争性随机在线算法。在1993年和本文获得的结果之间,尚未报道过分层图遍历的随机竞争比率。在这项工作中,我们展示了如何在精心选择的不断发展的度量空间上应用镜像下降框架,并获得$ O(k^2)$ - 竞争性随机在线算法。这渐近地匹配了上述下限(Bubeck,Coester,Rabani; STOC 2023),在此处的结果首次发布之后,我们宣布了这一点(除其他结果)。
In a 1989 paper titled "shortest paths without a map", Papadimitriou and Yannakakis introduced an online model of searching in a weighted layered graph for a target node, while attempting to minimize the total length of the path traversed by the searcher. This problem, later called layered graph traversal, is parametrized by the maximum cardinality $k$ of a layer of the input graph. It is an online setting for dynamic programming, and it is known to be a rather general and fundamental model of online computing, which includes as special cases other acclaimed models. The deterministic competitive ratio for this problem was soon discovered to be exponential in $k$, and it is now nearly resolved: it lies between $Ω(2^k)$ and $O(k2^k)$. Regarding the randomized competitive ratio, in 1993 Ramesh proved, surprisingly, that this ratio has to be at least $Ω(k^2 / \log^{1+ε} k)$ (for any constant $ε> 0$). In the same paper, Ramesh also gave an $O(k^{13})$-competitive randomized online algorithm. Between 1993 and the results obtained in this paper, no progress has been reported on the randomized competitive ratio of layered graph traversal. In this work we show how to apply the mirror descent framework on a carefully selected evolving metric space, and obtain an $O(k^2)$-competitive randomized online algorithm. This matches asymptotically an improvement of the aforementioned lower bound (Bubeck, Coester, Rabani; STOC 2023), which we announced (among other results) after the initial publication of the results here.