论文标题

通过广义taguchi方法和目标向量规范的多目标鲁棒CNN系统的最佳超参数和结构设置

Optimal Hyperparameters and Structure Setting of Multi-Objective Robust CNN Systems via Generalized Taguchi Method and Objective Vector Norm

论文作者

Wang, Sheng-Guo, Jiang, Shanshan

论文摘要

最近,机器学习(ML),人工智能(AI)和卷积神经网络(CNN)在广泛的应用中取得了巨大进展,在该应用程序中,其系统具有深度学习结构以及大量确定CNN和AI系统质量和性能的超级参数。这些系统可能具有多目标ML和AI性能需求。有一个关键要求,要找到多目标强大最佳CNN系统的最佳超参数和结构。本文提出了一种广义的Taguchi方法,以通过其目标性能向量范围有效地确定多目标可靠的最佳CNN系统的最佳超参数和结构。提出的方法和方法应用于CNN分类系统,其原始RESNET作为CIFAR-10数据集作为演示和验证,这表明所提出的方法非常有效,可以实现CIFAR-10上原始Resnet的最佳精度。

Recently, Machine Learning (ML), Artificial Intelligence (AI), and Convolutional Neural Network (CNN) have made huge progress with broad applications, where their systems have deep learning structures and a large number of hyperparameters that determine the quality and performance of the CNNs and AI systems. These systems may have multi-objective ML and AI performance needs. There is a key requirement to find the optimal hyperparameters and structures for multi-objective robust optimal CNN systems. This paper proposes a generalized Taguchi approach to effectively determine the optimal hyperparameters and structure for the multi-objective robust optimal CNN systems via their objective performance vector norm. The proposed approach and methods are applied to a CNN classification system with the original ResNet for CIFAR-10 dataset as a demonstration and validation, which shows the proposed methods are highly effective to achieve an optimal accuracy rate of the original ResNet on CIFAR-10.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源