论文标题

FCM-DNN:通过深度准确性模糊C均聚类模型诊断冠状动脉疾病

FCM-DNN: diagnosing coronary artery disease by deep accuracy Fuzzy C-Means clustering model

论文作者

Joloudari, Javad Hassannataj, Saadatfar, Hamid, GhasemiGol, Mohammad, Alizadehsani, Roohallah, Sani, Zahra Alizadeh, Hasanzadeh, Fereshteh, Hassannataj, Edris, Sharifrazi, Danial, Mansor, Zulkefli

论文摘要

心血管疾病是中年和老年人中最具挑战性的疾病之一,导致高死亡率。冠状动脉疾病(CAD)被称为常见的心血管疾病。用于诊断CAD的标准临床工具是血管造影。主要挑战是危险的副作用和高血管造影成本。如今,基于人工智能的方法的发展已成为诊断疾病的宝贵成就。因此,在本文中,开发了与深神经网络(FCM-DNN)相结合的人工智能方法,例如神经网络(NN),深神经网络(DNN)和模糊的C均值聚类,用于诊断在心脏磁共振成像(CMRI)数据集上的CAD。原始数据集用于两种不同的方法。首先,将标记的数据集应用于NN和DNN以创建NN和DNN模型。其次,将标签删除,并通过FCM方法聚类未标记的数据集,然后将群集的数据集送入DNN以创建FCM-DNN模型。通过利用第二个聚类和建模,改善了训练过程,因此,精度提高了。结果,提议的FCM-DNN模型以99.91%的精度指定了10个簇,即健康受试者的5个簇和5个群集的精度,通过10倍的跨录音技术,与92.18%和92.18%和99.63%的精度相比,可用于健康受试者的5个簇和5个簇。据我们所知,尚未使用人工智能方法对CMRI数据集进行CAD诊断。结果证实,拟议的FCM-DNN模型对科学和研究中心有帮助。

Cardiovascular disease is one of the most challenging diseases in middle-aged and older people, which causes high mortality. Coronary artery disease (CAD) is known as a common cardiovascular disease. A standard clinical tool for diagnosing CAD is angiography. The main challenges are dangerous side effects and high angiography costs. Today, the development of artificial intelligence-based methods is a valuable achievement for diagnosing disease. Hence, in this paper, artificial intelligence methods such as neural network (NN), deep neural network (DNN), and Fuzzy C-Means clustering combined with deep neural network (FCM-DNN) are developed for diagnosing CAD on a cardiac magnetic resonance imaging (CMRI) dataset. The original dataset is used in two different approaches. First, the labeled dataset is applied to the NN and DNN to create the NN and DNN models. Second, the labels are removed, and the unlabeled dataset is clustered via the FCM method, and then, the clustered dataset is fed to the DNN to create the FCM-DNN model. By utilizing the second clustering and modeling, the training process is improved, and consequently, the accuracy is increased. As a result, the proposed FCM-DNN model achieves the best performance with a 99.91% accuracy specifying 10 clusters, i.e., 5 clusters for healthy subjects and 5 clusters for sick subjects, through the 10-fold cross-validation technique compared to the NN and DNN models reaching the accuracies of 92.18% and 99.63%, respectively. To the best of our knowledge, no study has been conducted for CAD diagnosis on the CMRI dataset using artificial intelligence methods. The results confirm that the proposed FCM-DNN model can be helpful for scientific and research centers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源