论文标题

通过$ \ rm znga_2o_4 $中的缺陷频带进行孔电导率

Hole conductivity through a defect band in $\rm ZnGa_2O_4$

论文作者

Sabino, Fernando P., Chatratin, Intuon, Janotti, Anderson, Dalpian, Gustavo M.

论文摘要

具有宽带隙(3.0 eV),高介电常数(> 10)的半导体,良好的热量耗散以及$ n $ - 和$ p $ - 型型掺杂对于高能量电力电子设备非常可取。最近的研究表明,$ \ rm znga_2o_4 $可能适合这些应用程序,作为$ \ rm ga_2o_3 $的替代方案。 $ \ rm znga_2o_4 $的简单面部居中的立方尖晶石结构会导致各向同性电子和光学特性,与$β$ - 单斜$ \ rm ga_2o_3 $的大型各向异性特性相比。此外,$ \ rm znga_2o_4 $平均显示出更好的热量耗散和$ n $ - 和$ p $ type电导率的潜力。在这里,我们使用密度功能理论和混合功能计算来研究$ \ rm Znga_2O_4 $的电子,光学和点缺陷属性,重点是$ n $ - 和p型电导率的可能性。我们发现,阳离子反式$ \ rm ga_ {zn} $是最低的能量供体缺陷,可能导致无意的$ n $ type电导率。自捕获孔(小孔极性)和受体缺陷的高层能量的稳定性使得难以实现$ p $ type的电导率。但是,随着Zn的过量,形成$ \ rm Zn _ {(1+2x)} ga__ {2(1-x)} O_4 $合金显示一个中级价频段,促进$ P $ -Type的电导率。由于该中级价带的局部性质,预计极化子跳跃的$ P $型电导率可以解释最近实验中观察到的低迁移率和低孔密度。

Semiconductors with wide band gap (3.0 eV), high dielectric constant (> 10), good thermal dissipation, and capable of $n$- and $p$-type doping are highly desirable for high-energy power electronic devices. Recent studies indicate that $\rm ZnGa_2O_4$ may be suitable for these applications, standing out as an alternative to $\rm Ga_2O_3$. The simple face centered cubic spinel structure of $\rm ZnGa_2O_4$ results in isotropic electronic and optical properties, in contrast to the large anisotropic properties of the $β$-monoclinic $\rm Ga_2O_3$. In addition, $\rm ZnGa_2O_4$ has shown, on average, better thermal dissipation and potential for $n$- and $p$-type conductivity. Here we use density functional theory and hybrid functional calculations to investigate the electronic, optical, and point defect properties of $\rm ZnGa_2O_4$, focusing on the possibility for $n$- and p-type conductivity. We find that the cation antisite $\rm Ga_{Zn}$ is the lowest energy donor defect that can lead to unintentional $n$-type conductivity. The stability of self-trapped holes (small hole polarons) and the high formation energy of acceptor defects make it difficult to achieve $p$-type conductivity. However, with excess of Zn, forming $\rm Zn_{(1+2x)}Ga_{2(1-x)}O_4$ alloys display an intermediate valence band, facilitating $p$-type conductivity. Due to the localized nature of this intermediate valence band, $p$-type conductivity by polaron hopping is expected, explaining the low mobility and low hole density observed in recent experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源