论文标题
使用2D热边界层的相变材料的低能开关
Low energy switching of phase change materials using a 2D thermal boundary layer
论文作者
论文摘要
相变材料(PCM)的可开关光学和电气性能正在寻找可重新配置的光子设备中数据存储以外的新应用程序。但是,需要高功率热脉冲来融化从晶体到无定形的材料。在硅光子学中尤其如此,其中波导材料的高热电导率使PCM能量效率低下。在这里,我们通过在二氧化硅或硅和PCM之间插入一层二维(2D)材料(MOS2或WS2),提高激光诱导的相变的能效。根据基板,2D材料在非晶化过程(重置)过程中将所需的激光功率降低至少40%。热模拟确认MOS2和WS2 2D层都充当热屏障,从而有效地将能量限制在PCM层中。值得注意的是,2D层的热绝缘效应等于〜100 nm的SiO2层。由范德华(VDW)键的高热边界电阻限制了通过层界面的热扩散。因此,具有稳定VDW接口的2D材料可用于提高PCM调整的SI光子设备的热效率。此外,我们的波导模拟表明,2D层不会影响Si波导中的传播模式,因此,这种简单的额外薄膜可产生大量的能效提高,而不会降低波导的光学性能。我们的发现为节能激光诱导的基于PCM的可重构光子设备的结构相变铺平了道路。
The switchable optical and electrical properties of phase change materials (PCMs) are finding new applications beyond data storage in reconfigurable photonic devices. However, high power heat pulses are needed to melt-quench the material from crystalline to amorphous. This is especially true in silicon photonics, where the high thermal conductivity of the waveguide material makes heating the PCM energy inefficient. Here, we improve the energy efficiency of the laser-induced phase transitions by inserting a layer of two-dimensional (2D) material, either MoS2 or WS2, between the silica or silicon and the PCM. The 2D material reduces the required laser power by at least 40% during the amorphization (RESET) process, depending on the substrate. Thermal simulations confirm that both MoS2 and WS2 2D layers act as a thermal barrier, which efficiently confines energy within the PCM layer. Remarkably, the thermal insulation effect of the 2D layer is equivalent to a ~100 nm layer of SiO2. The high thermal boundary resistance induced by the van der Waals (vdW)-bonded layers limits the thermal diffusion through the layer interfaces. Hence, 2D materials with stable vdW interfaces can be used to improve the thermal efficiency of PCM-tuned Si photonic devices. Furthermore, our waveguide simulations show that the 2D layer does not affect the propagating mode in the Si waveguide, thus this simple additional thin film produces a substantial energy efficiency improvement without degrading the optical performance of the waveguide. Our findings pave the way for energy-efficient laser-induced structural phase transitions in PCM-based reconfigurable photonic devices.