论文标题

PPA:对联邦学习的偏好分析攻击

PPA: Preference Profiling Attack Against Federated Learning

论文作者

Zhou, Chunyi, Gao, Yansong, Fu, Anmin, Chen, Kai, Dai, Zhiyang, Zhang, Zhi, Xue, Minhui, Zhang, Yuqing

论文摘要

联合学习(FL)在许多分散的用户中训练全球模型,每个用户都有本地数据集。与传统的集中学习相比,FL不需要直接访问本地数据集,因此旨在减轻数据隐私问题。但是,由于推理攻击,包括会员推理,属性推理和数据反演,FL中的数据隐私泄漏仍然存在。在这项工作中,我们提出了一种新型的隐私推理攻击,创造的偏好分析攻击(PPA),该攻击(PPA)准确地介绍了本地用户的私人偏好,例如,来自客户在线购物中最喜欢(不喜欢)项目以及用户自拍照中最常见的表达式。通常,PPA可以在本地客户端(用户)的特征上介绍top-k(即尤其是k = 1、2、3和k = 1)的偏好。我们的关键见解是,本地用户模型的梯度变化对给定类别的样本比例(尤其是大多数(少数)类别的样本比例具有明显的敏感性。通过观察用户模型对类的梯度敏感性,PPA可以介绍用户本地数据集中类的样本比例,从而公开用户对类的偏好。 FL的固有统计异质性进一步促进了PPA。我们使用四个数据集(MNIST,CIFAR10,RAF-DB和PRODUCTS-10K)广泛评估了PPA的有效性。我们的结果表明,PPA分别达到了MNIST和CIFAR10的90%和98%的TOP-1攻击精度。更重要的是,在实际的购物(即产品10k)和社交网络(即RAF-DB)(即RAF-DB)的现实商业商业场景中,PPA在以前的情况下获得了78%的TOP-1攻击精度,以推断有序的项目(即作为商业竞争者),在以下情况下,以推断出受害者的用户最常见的是E. g。

Federated learning (FL) trains a global model across a number of decentralized users, each with a local dataset. Compared to traditional centralized learning, FL does not require direct access to local datasets and thus aims to mitigate data privacy concerns. However, data privacy leakage in FL still exists due to inference attacks, including membership inference, property inference, and data inversion. In this work, we propose a new type of privacy inference attack, coined Preference Profiling Attack (PPA), that accurately profiles the private preferences of a local user, e.g., most liked (disliked) items from the client's online shopping and most common expressions from the user's selfies. In general, PPA can profile top-k (i.e., k = 1, 2, 3 and k = 1 in particular) preferences contingent on the local client (user)'s characteristics. Our key insight is that the gradient variation of a local user's model has a distinguishable sensitivity to the sample proportion of a given class, especially the majority (minority) class. By observing a user model's gradient sensitivity to a class, PPA can profile the sample proportion of the class in the user's local dataset, and thus the user's preference of the class is exposed. The inherent statistical heterogeneity of FL further facilitates PPA. We have extensively evaluated the PPA's effectiveness using four datasets (MNIST, CIFAR10, RAF-DB and Products-10K). Our results show that PPA achieves 90% and 98% top-1 attack accuracy to the MNIST and CIFAR10, respectively. More importantly, in real-world commercial scenarios of shopping (i.e., Products-10K) and social network (i.e., RAF-DB), PPA gains a top-1 attack accuracy of 78% in the former case to infer the most ordered items (i.e., as a commercial competitor), and 88% in the latter case to infer a victim user's most often facial expressions, e.g., disgusted.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源