论文标题
从历史地图自动重建过去的道路网络
Towards the automated large-scale reconstruction of past road networks from historical maps
论文作者
论文摘要
公路或铁路网络等运输基础设施是我们文明的基本组成部分。对于可持续的计划和明智的决策,对公路网络等运输基础设施的长期演变有透彻的了解至关重要。但是,在2000年代之前,涵盖大型空间范围的空间上的明确,多阶段的道路网络数据涵盖了较大的空间范围。本文中,我们提出了一个框架,该框架采用越来越多的扫描和地理参考的历史地图系列来重建过去的道路网络,通过整合从历史地图中提取的丰富的现代道路网络数据和颜色信息。具体而言,我们的方法将当代路段用作分析单元,并通过根据图像处理和聚类技术推断历史地图系列中的存在来提取历史道路。我们测试了我们在美国超过300,000条的路段上测试了我们的方法,这些方法代表了美国的50,000公里的道路网络,延伸了三个涵盖1890年至1950年之间53个历史地形图表的研究领域。我们通过与其他历史数据集进行了比较,评估了我们的方法。与手动创建的参考数据相比,该量很高,该量很高。生长模式。我们证明,与从历史地图系列中提取的信息集成的当代地理空间数据为长期城市化过程和景观变化的定量分析开辟了新的途径,远远超出了操作遥感和数字制图的时代。
Transportation infrastructure, such as road or railroad networks, represent a fundamental component of our civilization. For sustainable planning and informed decision making, a thorough understanding of the long-term evolution of transportation infrastructure such as road networks is crucial. However, spatially explicit, multi-temporal road network data covering large spatial extents are scarce and rarely available prior to the 2000s. Herein, we propose a framework that employs increasingly available scanned and georeferenced historical map series to reconstruct past road networks, by integrating abundant, contemporary road network data and color information extracted from historical maps. Specifically, our method uses contemporary road segments as analytical units and extracts historical roads by inferring their existence in historical map series based on image processing and clustering techniques. We tested our method on over 300,000 road segments representing more than 50,000 km of the road network in the United States, extending across three study areas that cover 53 historical topographic map sheets dated between 1890 and 1950. We evaluated our approach by comparison to other historical datasets and against manually created reference data, achieving F-1 scores of up to 0.95, and showed that the extracted road network statistics are highly plausible over time, i.e., following general growth patterns. We demonstrated that contemporary geospatial data integrated with information extracted from historical map series open up new avenues for the quantitative analysis of long-term urbanization processes and landscape changes far beyond the era of operational remote sensing and digital cartography.