论文标题

二次多项式的鲁棒sylvester-gallai型定理

Robust Sylvester-Gallai type theorem for quadratic polynomials

论文作者

Peleg, Shir, Shpilka, Amir

论文摘要

在这项工作中,我们将Sylvester-Gallai定理的强大版本扩展到Barak,Dvir,Wigderson和Yehudayoff,并将DVIR,SARAF和WIGDERSON获得的案例扩展到了Quadratic的多项式案例。具体而言,我们证明,如果$ \ Mathcal {q} \ subset \ mathbb {c} [x_1。 有$δ> 0 $,以至于每$ q \ in \ nathcal {q} $至少$Δm$ $ $ $ polyenmials $ p \ in \ nathcal {q} $,以便每当$ q $ p $ and $ q $ p $消失,那么第三个polynomial在$ \ ardcal {q} q} $ setminus \ setminus \ s q p \ $ \ dim(\ text {span}({\ mathcal {q}}))= \ text {poly}(1/δ)$。 Barak等人的工作。和Dvir等。研究了线性多项式的情况,并在维度上证明了$ O(1/δ)$的上限(在第一件作品中,给出了$ O(1/δ^2)$的上限,在第二次工作中将其提高到$ O(1/δ)$)。

In this work, we extend the robust version of the Sylvester-Gallai theorem, obtained by Barak, Dvir, Wigderson and Yehudayoff, and by Dvir, Saraf and Wigderson, to the case of quadratic polynomials. Specifically, we prove that if $\mathcal{Q}\subset \mathbb{C}[x_1.\ldots,x_n]$ is a finite set, $|\mathcal{Q}|=m$, of irreducible quadratic polynomials that satisfy the following condition: There is $δ>0$ such that for every $Q\in\mathcal{Q}$ there are at least $δm$ polynomials $P\in \mathcal{Q}$ such that whenever $Q$ and $P$ vanish then so does a third polynomial in $\mathcal{Q}\setminus\{Q,P\}$, then $\dim(\text{span}({\mathcal{Q}}))=\text{poly}(1/δ)$. The work of Barak et al. and Dvir et al. studied the case of linear polynomials and proved an upper bound of $O(1/δ)$ on the dimension (in the first work an upper bound of $O(1/δ^2)$ was given, which was improved to $O(1/δ)$ in the second work).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源