论文标题

重力波天文学时代的宇宙学和基本物理学

Cosmology and Fundamental Physics in the Era of Gravitational-Wave Astronomy

论文作者

Jenkins, Alexander C.

论文摘要

引力波(GW)天文学的出现为我们提供了一种全新的观察宇宙的方式,使我们能够探究其结构和进化,从未有过。在本文中,我们探讨了使用GW观察结果获得对宇宙学和基本物理学的新见解的三个不同但互补的途径。 在第1章中,我们研究了天体物理GW背景(AGWB):累积的GW信号是由整个宇宙中大量紧凑型二元合并(CBC)产生的。由于这些紧凑型二进制文件位于星系中,因此AGWB包含各向异性,可探索宇宙物质分布的大规模结构。我们研究了AGWB的角功率谱,其目的是开发可与定向AGWB搜索面临的预测。 在第2章中,我们计算了cusps和Kinks在宇宙弦环上发出的非线性GW记忆,这是GWS的最有前途的宇宙学源之一。我们表明,令人惊讶的是,尖端存储器信号的偏差有足够大的循环,表明尖端的弱场描述的有效性分解。然后,我们提出了一种可能的解决方案,以解决这种差异,其中围绕尖齿的一部分倒塌形成了原始黑洞(PBH)。 最后,在第3章中,我们基于对二进制系统轨道的精确测量的GW检测开发了一种强大的新方法。在存在随机GW背景(GWB)的情况下,二进制组件的轨迹会受到干扰,从而随着时间的推移会在系统的轨道参数中随机行走。我们通过这种效果计算出对GWB的二进制脉冲星和月球激光的敏感性,并表明当前的数据已经足够敏感,可以将迄今为止最强的约束放在$μ$ Hz频带中。

The advent of gravitational-wave (GW) astronomy has presented us with a completely new means for observing the Universe, allowing us to probe its structure and evolution like never before. In this thesis, we explore three distinct but complementary avenues for using GW observations to gain new insights into cosmology and fundamental physics. In chapter 1, we study the astrophysical GW background (AGWB): the cumulative GW signal arising from a large number of compact binary coalescences (CBCs) throughout the Universe. Since these compact binaries reside in galaxies, the AGWB contains anisotropies that trace out the large-scale structure of the cosmic matter distribution. We investigate the angular power spectrum of the AGWB, with the goal of developing predictions that can be confronted with directional AGWB searches. In chapter 2, we calculate the nonlinear GW memory emitted by cusps and kinks on cosmic string loops, which are among the most promising cosmological sources of GWs. We show that, surprisingly, the cusp memory signal diverges for sufficiently large loops, indicating a breakdown in the validity of the weak-field description of the cusp. We then present one tentative possible solution to this divergence, in which the portion of the string surrounding the cusp collapses to form a primordial black hole (PBH). Finally, in chapter 3 we develop a powerful new method for GW detection based on precision measurements of the orbits of binary systems. In the presence of a stochastic GW background (GWB) the trajectories of the binary's components are perturbed, giving rise to a random walk in the system's orbital parameters over time. We calculate the sensitivity of binary pulsars and lunar laser ranging to the GWB through this effect, and show that present data are already sensitive enough to place the strongest constraints to date in the $μ$Hz frequency band.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源