论文标题

带有浅解码器网络的数据驱动传感器放置

Data-driven sensor placement with shallow decoder networks

论文作者

Williams, Jan, Zahn, Olivia, Kutz, J. Nathan

论文摘要

传感器放置是整个工程和物理科学的重要问题,例如重建,预测和控制。令人惊讶的是,迄今为止,很少开发用于优化传感器位置的原则数学技术,而领先的传感器放置算法通常基于发现线性,低级别子空间和QR算法的发现。 QR是一种计算高效的贪婪搜索算法,它从训练数据集中显示出最大差异的候选位置选择传感器位置。最近,神经网络,特别是浅解码器网络(SDN),已被证明在将传感器测量映射到原始高维状态空间方面非常成功。 SDN在重建精度,噪声耐受性和对传感器位置的鲁棒性中的线性子空间表示。但是,SDN缺乏确定传感器放置的原则数学技术。在这项工作中,我们开发了两种算法,用于优化与SDN一起使用的传感器位置:一种是基于QR(Q-SDN)的线性选择算法,一种是基于神经网络修剪的非线性选择算法(p-SDN)。这种传感器放置算法有望增强SDN的令人印象深刻的重建功能。我们在流体动力学的两个示例数据集上演示了传感器选择算法。此外,我们提供了与传统的线性嵌入技术(适当的正交分解)和QR贪婪选择之间的线性(Q-SDN)和非线性(P-SDN)算法之间的详细比较。我们表明,使用SDN的QR选择可以增强性能。 QR甚至超出了使用基于幅度的修剪的非线性选择方法。因此,贪婪的线性选择(QR)与非线性编码(SDN)的组合提供了协同的组合。

Sensor placement is an important and ubiquitous problem across the engineering and physical sciences for tasks such as reconstruction, forecasting and control. Surprisingly, there are few principled mathematical techniques developed to date for optimizing sensor locations, with the leading sensor placement algorithms often based upon the discovery of linear, low-rank sub-spaces and the QR algorithm. QR is a computationally efficient greedy search algorithm which selects sensor locations from candidate positions with maximal variance exhibited in a training data set. More recently, neural networks, specifically shallow decoder networks (SDNs), have been shown to be very successful in mapping sensor measurements to the original high-dimensional state space. SDNs outperform linear subspace representations in reconstruction accuracy, noise tolerance, and robustness to sensor locations. However, SDNs lack principled mathematical techniques for determining sensor placement. In this work, we develop two algorithms for optimizing sensor locations for use with SDNs: one which is a linear selection algorithm based upon QR (Q-SDN), and one which is a nonlinear selection algorithm based upon neural network pruning (P-SDN). Such sensor placement algorithms promise to enhance the already impressive reconstruction capabilities of SDNs. We demonstrate our sensor selection algorithms on two example data sets from fluid dynamics. Moreover, we provide a detailed comparison between our linear (Q-SDN) and nonlinear (P-SDN) algorithms with traditional linear embedding techniques (proper orthogonal decomposition) and QR greedy selection. We show that QR selection with SDNs enhances performance. QR even out-performs our nonlinear selection method that uses magnitude-based pruning. Thus, the combination of a greedy linear selection (QR) with nonlinear encoding (SDN) provides a synergistic combination.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源