论文标题
为La Rance Tidal Barrage的AI驱动模型的开发和验证:可普遍的案例研究
Development and Validation of an AI-Driven Model for the La Rance Tidal Barrage: A Generalisable Case Study
论文作者
论文摘要
在这项工作中,使用新颖的参数化和深钢筋学习(DRL)技术开发了La Rance潮汐弹幕的AI驱动(自主)模型表示。我们的模型结果通过实验测量结果进行了验证,从而产生了针对构建的潮汐弹幕验证的第一个潮汐范围结构(TRS)模型,并提供给了学者。为了适当的模型,开发了用于模拟(I)涡轮机(在泵送和发电模式),(ii)过渡坡道功能(用于开放和关闭液压结构)和(iii)等效泻湖湿面积的方法。此外,实施了一种更新的DRL方法,以优化组成La Rance的液压结构的运行。这项工作实现的目标是验证AI驱动的TRS模型的能力,以适当预测(i)涡轮机功率和(ii)泻湖水位变化。此外,我们AI驱动模型的观察到的操作策略和年度能量产出似乎与报道的La Rance潮汐弹幕的能源输出相当。这项工作的结果(开发的方法和DRL实现)是可以普遍使用的,可以应用于其他TRS项目。此外,这项工作提供了洞察力,可以通过AI驱动的模型对TRS操作进行更真实的模拟。
In this work, an AI-Driven (autonomous) model representation of the La Rance tidal barrage was developed using novel parametrisation and Deep Reinforcement Learning (DRL) techniques. Our model results were validated with experimental measurements, yielding the first Tidal Range Structure (TRS) model validated against a constructed tidal barrage and made available to academics. In order to proper model La Rance, parametrisation methodologies were developed for simulating (i) turbines (in pumping and power generation modes), (ii) transition ramp functions (for opening and closing hydraulic structures) and (iii) equivalent lagoon wetted area. Furthermore, an updated DRL method was implemented for optimising the operation of the hydraulic structures that compose La Rance. The achieved objective of this work was to verify the capabilities of an AI-Driven TRS model to appropriately predict (i) turbine power and (ii) lagoon water level variations. In addition, the observed operational strategy and yearly energy output of our AI-Driven model appeared to be comparable with those reported for the La Rance tidal barrage. The outcomes of this work (developed methodologies and DRL implementations) are generalisable and can be applied to other TRS projects. Furthermore, this work provided insights which allow for more realistic simulation of TRS operation, enabled through our AI-Driven model.