论文标题

用于研究空气污染数据的机器学习辅助视觉分析工作流程

A Machine-Learning-Aided Visual Analysis Workflow for Investigating Air Pollution Data

论文作者

Kuo, Yun-Hsin, Fujiwara, Takanori, Chou, Charles C. -K., Chen, Chun-houh, Ma, Kwan-Liu

论文摘要

分析空气污染数据是具有挑战性的,因为有各个方面的分析重点是:特征(what),空间(where)和时间(何时)。与大多数地理空间分析问题一样,除了高维特征外,空气污染的时间和空间依赖性都会引起性能分析的复杂性。机器学习方法(例如降低维度)可以提取和总结数据的重要信息,以增加理解这种复杂环境的负担。在本文中,我们提出了一种利用多种机器学习方法统一探索这些方面的方法。通过这种方法,我们开发了一个视觉分析系统,该系统支持灵活的分析工作流程,从而使域专家可以根据其分析需求自由探索不同方面。我们证明了系统的功能和分析工作流,支持多种用例的各种分析任务。

Analyzing air pollution data is challenging as there are various analysis focuses from different aspects: feature (what), space (where), and time (when). As in most geospatial analysis problems, besides high-dimensional features, the temporal and spatial dependencies of air pollution induce the complexity of performing analysis. Machine learning methods, such as dimensionality reduction, can extract and summarize important information of the data to lift the burden of understanding such a complicated environment. In this paper, we present a methodology that utilizes multiple machine learning methods to uniformly explore these aspects. With this methodology, we develop a visual analytic system that supports a flexible analysis workflow, allowing domain experts to freely explore different aspects based on their analysis needs. We demonstrate the capability of our system and analysis workflow supporting a variety of analysis tasks with multiple use cases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源