论文标题

具有动态紧张系数的非Boussinesq子网格尺度模型

Non-Boussinesq subgrid-scale model with dynamic tensorial coefficients

论文作者

Agrawal, Rahul, Whitmore, Michael P., Griffin, Kevin P., Bose, Sanjeeb T., Moin, Parviz

论文摘要

大涡模拟中使用的Boussinesq-type子网格尺度应力模型的主要缺点是大尺度应变率和过滤的亚网格压力之间对齐的固有假设。使用直接数值模拟(DNS)数据进行的先验分析表明,该假设在本地无效,因为亚网格尺度应力与大尺度应变率的相关性很差[Bardina等,AIAA,AIAA 1980; Meneveau和Liu,Ann。液体机械师。 2002]。在目前的工作中,在动态计算模型系数的情况下,介绍了一个新的非Boussinesq子网格尺度模型。一些以前的非Boussinesq模型已经观察到在提供湍流动能充分耗散的问题方面[例如:Bardina等,AIAA 1980;克拉克等。 J. Fluid Mech。,1979; Stolz和Adams,物理。流体,1999年];但是,目前的模型显示使用动态系数提供足够的耗散。建模的亚网格尺度雷诺(Reynolds)强调满足了LES的管理方程,消失的层流和固体边界的一致性要求,并且在湍流边界层的近壁区域中具有正确的渐近行为。 新模型被称为动态张量式Smagorinsky模型(DTCSM),已在规范流的模拟中进行了测试:衰减和强制均质的各向同性湍流(hit),以及高雷诺德斯数字的壁模型湍流;结果表明与DNS数据达成了有利的一致性。为了评估在更复杂的流中DTCSM的性能,进行了高雷诺数量流动在高斯凸起上表现出平滑体流动分离的高雷诺数流的模拟。与现有的静态系数(VREMAN)和动态Smagorinsky模型相比,与DNS相比,与DNS和实验数据相比,表面压力和皮肤摩擦的预测表明,DTCSM的准确性提高了。

A major drawback of Boussinesq-type subgrid-scale stress models used in large-eddy simulations is the inherent assumption of alignment between large-scale strain rates and filtered subgrid-stresses. A priori analyses using direct numerical simulation (DNS) data has shown that this assumption is invalid locally as subgrid-scale stresses are poorly correlated with the large-scale strain rates [Bardina et al., AIAA 1980; Meneveau and Liu, Ann. Rev. Fluid Mech. 2002]. In the present work, a new, non-Boussinesq subgrid-scale model is presented where the model coefficients are computed dynamically. Some previous non-Boussinesq models have observed issues in providing adequate dissipation of turbulent kinetic energy [e.g.: Bardina et al., AIAA 1980; Clark et al. J. Fluid Mech., 1979; Stolz and Adams, Phys. of Fluids, 1999]; however, the present model is shown to provide sufficient dissipation using dynamic coefficients. Modeled subgrid-scale Reynolds stresses satisfy the consistency requirements of the governing equations for LES, vanish in laminar flow and at solid boundaries, and have the correct asymptotic behavior in the near-wall region of a turbulent boundary layer. The new model, referred to as the dynamic tensor-coefficient Smagorinsky model (DTCSM), has been tested in simulations of canonical flows: decaying and forced homogeneous isotropic turbulence (HIT), and wall-modeled turbulent channel flow at high Reynolds numbers; the results show favorable agreement with DNS data. In order to assess the performance of DTCSM in more complex flows, wall-modeled simulations of high Reynolds number flow over a Gaussian bump exhibiting smooth-body flow separation are performed. Predictions of surface pressure and skin friction, compared against DNS and experimental data, show improved accuracy from DTCSM in comparison to the existing static coefficient (Vreman) and dynamic Smagorinsky model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源