论文标题
HAT5:使用文本到文本传输变压器的仇恨语言识别
HaT5: Hate Language Identification using Text-to-Text Transfer Transformer
论文作者
论文摘要
我们研究了最先进的(SOTA)体系结构T5(可在Superglue上获得)的性能,并与此相比3个相对多样化的数据集的5个不同任务中的其他SOTA架构进行了比较。数据集在其执行任务的数量和类型方面是多种多样的。为了提高性能,我们使用自回归模型来增强培训数据。我们在几个任务上取得了近SOTA的结果 - OLID 2019数据集的任务A的宏F1分数为81.66%,仇恨言论和进攻内容(HASOC)2021数据集的任务A分别为82.9%,SOTA分别为82.9%和83.05%。我们执行错误分析,并解释为什么其中一个模型(BI-LSTM)通过使用公共可用算法来做出预测:集成梯度(IG)。这是因为可解释的人工智能(XAI)对于赢得用户的信任至关重要。这项工作的主要贡献是T5的实施方法,该方法正在讨论。使用新的对话AI模型检查站进行数据扩展,从而带来了性能的改进;以及关于HASOC 2021数据集缺点的启示。它通过使用一小部分示例来揭示了差数据注释的困难,即即使测试集的基础真相不正确,T5模型也做出了正确的预测(我们认为)。我们还提供了HuggingFace Hub1上的模型检查点,以促进透明度。
We investigate the performance of a state-of-the art (SoTA) architecture T5 (available on the SuperGLUE) and compare with it 3 other previous SoTA architectures across 5 different tasks from 2 relatively diverse datasets. The datasets are diverse in terms of the number and types of tasks they have. To improve performance, we augment the training data by using an autoregressive model. We achieve near-SoTA results on a couple of the tasks - macro F1 scores of 81.66% for task A of the OLID 2019 dataset and 82.54% for task A of the hate speech and offensive content (HASOC) 2021 dataset, where SoTA are 82.9% and 83.05%, respectively. We perform error analysis and explain why one of the models (Bi-LSTM) makes the predictions it does by using a publicly available algorithm: Integrated Gradient (IG). This is because explainable artificial intelligence (XAI) is essential for earning the trust of users. The main contributions of this work are the implementation method of T5, which is discussed; the data augmentation using a new conversational AI model checkpoint, which brought performance improvements; and the revelation on the shortcomings of HASOC 2021 dataset. It reveals the difficulties of poor data annotation by using a small set of examples where the T5 model made the correct predictions, even when the ground truth of the test set were incorrect (in our opinion). We also provide our model checkpoints on the HuggingFace hub1 to foster transparency.