论文标题

阳性未标记的结构域适应

Positive-Unlabeled Domain Adaptation

论文作者

Sonntag, Jonas, Behrens, Gunnar, Schmidt-Thieme, Lars

论文摘要

域适应方法已证明可以有效地从标记的源域概括为标签稀缺目标域。先前的研究要么专注于未标记的领域适应,而无需任何目标监督或半监督域的适应性,而每个类别的标记目标示例很少。另一方面,积极的未标记(PU-)学习引起了人们对弱监督学习文献的兴趣,因为在一些现实世界中,积极标签比负面标签更容易获得。在这项工作中,我们是第一个引入正标域适应性的挑战的人,我们旨在从完全标记的源域概括到只有正和未标记数据的目标域。我们通过首先识别由源域标签和未标记的风险估计器引导的目标域中可靠的正伪和负伪标记,提出了一种新的两步学习方法来解决此问题。这使我们能够在第二步中使用目标域上的标准分类器。我们通过在基准数据集上运行实验来验证我们的方法以进行视觉对象识别。此外,我们为我们的环境提出了现实世界的示例,并验证了我们在停车占用数据方面的卓越表现。

Domain Adaptation methodologies have shown to effectively generalize from a labeled source domain to a label scarce target domain. Previous research has either focused on unlabeled domain adaptation without any target supervision or semi-supervised domain adaptation with few labeled target examples per class. On the other hand Positive-Unlabeled (PU-) Learning has attracted increasing interest in the weakly supervised learning literature since in quite some real world applications positive labels are much easier to obtain than negative ones. In this work we are the first to introduce the challenge of Positive-Unlabeled Domain Adaptation where we aim to generalise from a fully labeled source domain to a target domain where only positive and unlabeled data is available. We present a novel two-step learning approach to this problem by firstly identifying reliable positive and negative pseudo-labels in the target domain guided by source domain labels and a positive-unlabeled risk estimator. This enables us to use a standard classifier on the target domain in a second step. We validate our approach by running experiments on benchmark datasets for visual object recognition. Furthermore we propose real world examples for our setting and validate our superior performance on parking occupancy data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源