论文标题
小弦理论中的量子信息争夺和量子混乱
Quantum information scrambling and quantum chaos in little string theory
论文作者
论文摘要
在当前的手稿中,我们对非局部相互作用对许多身体系统中量子信息传播的影响进行系统研究。特别是,我们研究了非局部性如何影响现有的界限对涉及两个本地操作员蝴蝶速度的换向器的增长率。为此,我们考虑了关于$ n \ gg 1 $,ns $ 5 $ branes的非局部理论,该理论在消失的弦耦合(“小弦理论”的极限下产生。非局部性的直接证据可以从全息纠缠熵的最主要部分的“体积法”行为中实现。我们通过研究由高能量子的近距离几何形状的动力学来获得蝴蝶速度,这是由于对相应的热菲尔德双状态的早期扰动而产生的冲击波形式。我们观察到,蝴蝶速度随着小弦理论的非本地尺度的增加而增加,反向Hagedorn温度$β_{H} $,表明由于非局部相互作用而导致的信息差异更快。得出相同的结论,观察到两个侧面相互信息的破坏以$β_{h} $的较高值的速度更快地发生。最后,我们通过“杆跳过”现象的量子混乱参数与量子混乱的参数与准模式之间的直接连接。
In the current manuscript we perform a systematic investigation about the effects of nonlocal interaction to the spread of quantum information in many body system. In particular, we have studied how nonlocality influence the existing bound on the growth rate of the commutator involving two local operators, the butterfly velocity. For this purpose, we consider the nonlocal theory on the worldvolume of $N\gg 1$, NS$5$ branes arising in the limit of vanishing string coupling, the `little string theory'. A direct evidence of nonlocality can be realized from the `volume law' behavior for the most dominant part of holographic entanglement entropy. We obtain the butterfly velocity by studying the dynamics of the near horizon geometry backreacted by a high energy quanta in the form of a shockwave resulting from an early perturbation on the corresponding thermofield double state. We observe that the butterfly velocity increases with the nonlocal scale of little string theory, the inverse Hagedorn temperature $β_{h}$, indicating a faster rate of information spread due to the nonlocal interaction. The same conclusion follows as the disruption of two sided mutual information is observed to occur at a faster rate for higher values of $β_{h}$. Finally, we realize a direct connection between the parameters of quantum chaos and the quasinormal modes for collective excitations through the phenomenon of `pole skipping'.