论文标题

使用上下文提示检测外面的对象

Detecting out-of-context objects using contextual cues

论文作者

Acharya, Manoj, Roy, Anirban, Koneripalli, Kaushik, Jha, Susmit, Kanan, Christopher, Divakaran, Ajay

论文摘要

本文介绍了一种在图像中检测到脱节(OOC)对象的方法。给定带有一组对象的图像,我们的目标是确定对象是否与场景上下文不一致,并使用边界框检测OOC对象。在这项工作中,我们考虑了通常探索的上下文关系,例如共发生关系,对象相对于其他对象的相对大小以及对象在场景中的位置。我们认为,上下文提示对于确定对象标签的对象标签很有用,而不一致的上下文提示不利于确定对象标签的偏置对象。为了实现这一假设,我们提出了一个图形上下文推理网络(GCRN)来检测OOC对象。 GCRN由两个单独的图表组成,可以根据图像中的上下文提示进行预测对象标签:1)根据相邻对象学习对象特征的表示图表和2)一个上下文图,以从相邻对象中明确捕获上下文提示。 GCRN明确捕获了上下文提示,以改善对内部对象的检测并识别违反上下文关系的对象。为了评估我们的方法,我们通过将OOC对象实例添加到可可图像中来创建一个大规模的数据集。我们还评估了最近的强迫症基准。我们的结果表明,GCRN在检测OOC对象和正确检测中下文对象方面的表现优于竞争基准。

This paper presents an approach to detect out-of-context (OOC) objects in an image. Given an image with a set of objects, our goal is to determine if an object is inconsistent with the scene context and detect the OOC object with a bounding box. In this work, we consider commonly explored contextual relations such as co-occurrence relations, the relative size of an object with respect to other objects, and the position of the object in the scene. We posit that contextual cues are useful to determine object labels for in-context objects and inconsistent context cues are detrimental to determining object labels for out-of-context objects. To realize this hypothesis, we propose a graph contextual reasoning network (GCRN) to detect OOC objects. GCRN consists of two separate graphs to predict object labels based on the contextual cues in the image: 1) a representation graph to learn object features based on the neighboring objects and 2) a context graph to explicitly capture contextual cues from the neighboring objects. GCRN explicitly captures the contextual cues to improve the detection of in-context objects and identify objects that violate contextual relations. In order to evaluate our approach, we create a large-scale dataset by adding OOC object instances to the COCO images. We also evaluate on recent OCD benchmark. Our results show that GCRN outperforms competitive baselines in detecting OOC objects and correctly detecting in-context objects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源