论文标题
谐波图的新的保形热流
A new conformal heat flow of harmonic maps
论文作者
论文摘要
我们介绍并研究了由二维域上由图和保形因子组成的一对的进化方程定义的谐波图的共形热流。该流程旨在推迟有限的时间奇点,但不会摆脱形成气泡的可能性。我们表明,Struwe类型的全球弱解决方案存在,除了最多有限的一点,这是平滑的。
We introduce and study a conformal heat flow of harmonic maps defined by an evolution equation for a pair consisting of a map and a conformal factor of metric on the two-dimensional domain. This flow is designed to postpone finite time singularity but does not get rid of possibility of bubble forming. We show that Struwe type global weak solution exists, which is smooth except at most finitely many points.