论文标题

A $ Q $ - 富集$ P $ - 分区(扩展摘要)

A $q$-deformation of enriched $P$-partitions (extended abstract)

论文作者

Grinberg, Darij, Vassilieva, Ekaterina A.

论文摘要

我们介绍了$ Q $ - 定性,该信息在单个框架上进行了概括,以前的作品在古典和丰富的$ p $分区上进行了概括。尤其是,我们建立了一个新的Power系列系列,其中具有参数$ Q $,该$ Q $在Gessel的基本($ Q = 0 $)和Stembridge's Peak Quasisymmetric函数($ Q = 1 $)之间进行了插值,并表明它是$ \ qSym $的基础,当$ \ qsym $时$ q \ notin \ notin \ notin \ notin \ notin \ { - 1,1,1,1,f \ \ \ \} $。此外,我们以$ Q $参数构建了它们相应的单基础基础,涵盖了我们先前在富集的单体方面的工作以及霍夫曼的基本甲合物对称功能。

We introduce a $q$-deformation that generalises in a single framework previous works on classical and enriched $P$-partitions. In particular, we build a new family of power series with a parameter $q$ that interpolates between Gessel's fundamental ($q=0$) and Stembridge's peak quasisymmetric functions ($q=1$) and show that it is a basis of $\QSym$ when $q\notin\{-1,1\}$. Furthermore we build their corresponding monomial bases parametrised with $q$ that cover our previous work on enriched monomials and the essential quasisymmetric functions of Hoffman.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源