论文标题

通过无监督的域适应来对行为进行神经种群活动的跨课程记录的牢固比对

Robust alignment of cross-session recordings of neural population activity by behaviour via unsupervised domain adaptation

论文作者

Jude, Justin, Perich, Matthew G, Miller, Lee E, Hennig, Matthias H

论文摘要

尽管观察到使用多电极阵列记录的数据的高维度,但假定与行为有关的神经种群活性被认为是固有的低维度。因此,在使用潜在变量模型时,已经证明从神经种群记录中预测行为是最有效的。但是,随着时间的流逝,单个神经元的活性会漂移,并且由于植入神经探针的运动而将记录不同的神经元。这意味着在不同一天进行测试时,经过训练以预测行为的解码器会表现较差。另一方面,有证据表明,即使在数月和几年中,潜在的潜在动态也可能是稳定的。基于这个想法,我们引入了一个模型,能够从同一动物记录的以前看不见的数据中推断出行为相关的潜在动力学,而无需解码器重新校准。我们表明,无监督的域适应性与经过多个会话训练的顺序变异自动编码器相结合,可以实现良好的概括以看不见数据并正确预测常规方法失败的情况。我们的结果进一步支持了以下假设:随着时间的流逝,与行为相关的神经动力学是低维且稳定的,并且可以更有效,更灵活地使用大脑计算机接口技术。

Neural population activity relating to behaviour is assumed to be inherently low-dimensional despite the observed high dimensionality of data recorded using multi-electrode arrays. Therefore, predicting behaviour from neural population recordings has been shown to be most effective when using latent variable models. Over time however, the activity of single neurons can drift, and different neurons will be recorded due to movement of implanted neural probes. This means that a decoder trained to predict behaviour on one day performs worse when tested on a different day. On the other hand, evidence suggests that the latent dynamics underlying behaviour may be stable even over months and years. Based on this idea, we introduce a model capable of inferring behaviourally relevant latent dynamics from previously unseen data recorded from the same animal, without any need for decoder recalibration. We show that unsupervised domain adaptation combined with a sequential variational autoencoder, trained on several sessions, can achieve good generalisation to unseen data and correctly predict behaviour where conventional methods fail. Our results further support the hypothesis that behaviour-related neural dynamics are low-dimensional and stable over time, and will enable more effective and flexible use of brain computer interface technologies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源