论文标题
用无标度通货膨胀来限制宇宙弦引力波光谱,并具有可行的重力降暗物质和非热静脉生成
Constraining the Cosmic Strings Gravitational Wave Spectra in No Scale Inflation with Viable Gravitino Dark matter and Non Thermal Leptogenesis
论文作者
论文摘要
我们重新审视由$ u(1)_ {b-l} $在无规模背景下最小超对称标准模型(MSSM)扩展的混合通货膨胀模型。考虑到一个单一的预测框架,我们研究了通货膨胀,静脉生成,加维蒂诺宇宙学以及由亚稳态宇宙弦产生的引力波的随机背景。通货膨胀结束时$ u(1)_ {b-l} $的自发断裂产生了一个亚稳态的宇宙字符串网络,而$ u(1)_ {b-l} $ higgs领域之间的相互作用与中微子群产生了沉重的大使人群体的右手中微子。繁重的主要群众通过seesaw机制来解释微小的中微子肿块,这是一种重新加热和非热静脉生成的现实情况。我们表明,可以在多种加热温度和$ u(1)_ {b-l} $对称性破坏量表的范围内实现成功的非热静脉生成和作为暗物质候选的稳定重力。简要讨论了在宏伟的统一理论(GUT)设置中实现亚稳态宇宙弦的可能性。 We find that a successful reheating with non-thermal leptogenesis and gravitino dark matter restrict the allowed values of string tension to a narrow range $10^{-9} \lesssim Gμ_{CS} \lesssim 8 \times 10^{-6}$, predicting a stochastic gravitational-wave background that lies within the 1-$σ$ bounds of the recent NANOGrav 12.5-yr数据以及未来GW实验的灵敏度范围内。
We revisit the hybrid inflation model gauged by $U(1)_{B-L}$ extension of the Minimal Supersymmetric Standard Model (MSSM) in a no-scale background. Considering a single predictive framework, we study inflation, leptogenesis, gavitino cosmology, and the stochastic background of gravitational waves produced by metastable cosmic strings. The spontaneous breaking of $U(1)_{B-L}$ at the end of inflation produces a network of metastable cosmic strings while, the interaction between $U(1)_{B-L}$ Higgs field and the neutrinos generate heavy Majorana masses for the right-handed neutrinos. The heavy Majorana masses explain the tiny neutrino masses via the seesaw mechanism, a realistic scenario for reheating and non-thermal leptogenesis. We show that a successful non-thermal leptogenesis and a stable gravitino as a dark matter candidate can be achieved for a wide range of reheating temperatures and $U(1)_{B-L}$ symmetry breaking scales. The possibility of realizing metastable cosmic strings in a grand unified theory (GUT) setup is briefly discussed. We find that a successful reheating with non-thermal leptogenesis and gravitino dark matter restrict the allowed values of string tension to a narrow range $10^{-9} \lesssim Gμ_{CS} \lesssim 8 \times 10^{-6}$, predicting a stochastic gravitational-wave background that lies within the 1-$σ$ bounds of the recent NANOGrav 12.5-yr data, as well as within the sensitivity bounds of future GW experiments.