论文标题

有界灌木深度的任意图的伪填充性

Pseudo-finiteness of arbitrary graphs of bounded shrub-depth

论文作者

Sankaran, Abhisekh

论文摘要

我们考虑有界灌木深度的任意类(有限或无限)的类别,特别是$ \ mathrm {tm} _r(d)$的类,该级具有高度$ d $和$ r $ labels的树模型的任意图。 We show that the graphs of $\mathrm{TM}_r(d)$ are $\mathrm{MSO}$-pseudo-finite relative to the class $\mathrm{TM}^{\text{f}}_r(d)$ of finite graphs of $\mathrm{TM}_r(d)$;也就是说,在$ \ mathrm {tm} _r(d)$的图中,每一个$ \ mathrm {mso} $句子在$ \ mathrm {tm Mathrm {tm}^{\ text {f text {f}} _ r(d)$中也是正确的。我们还表明,$ \ mathrm {tm} _r(d)$在超庞大和超摩托车下关闭。这些结果有两个后果。首先是$ \ mathrm {MSO} [m] $ - $ \ mathrm {tm} _r(d)$在$(d+1)$ - fold off $ m $中的索引。第二个是$ \ mathrm {tm} _r(d)$恰恰是所有图形的类,这些图是$ \ mathrm {mso} $ - pseudo-finite相对于$ \ mathrm {tm}^{\ text {\ text {f text {f}}} _ r(d)$。

We consider classes of arbitrary (finite or infinite) graphs of bounded shrub-depth, specifically the classes $\mathrm{TM}_r(d)$ of arbitrary graphs that have tree models of height $d$ and $r$ labels. We show that the graphs of $\mathrm{TM}_r(d)$ are $\mathrm{MSO}$-pseudo-finite relative to the class $\mathrm{TM}^{\text{f}}_r(d)$ of finite graphs of $\mathrm{TM}_r(d)$; that is, that every $\mathrm{MSO}$ sentence true in a graph of $\mathrm{TM}_r(d)$ is also true in a graph of $\mathrm{TM}^{\text{f}}_r(d)$. We also show that $\mathrm{TM}_r(d)$ is closed under ultraproducts and ultraroots. These results have two consequences. The first is that the index of the $\mathrm{MSO}[m]$-equivalence relation on graphs of $\mathrm{TM}_r(d)$ is bounded by a $(d+1)$-fold exponential in $m$. The second is that $\mathrm{TM}_r(d)$ is exactly the class of all graphs that are $\mathrm{MSO}$-pseudo-finite relative to $\mathrm{TM}^{\text{f}}_r(d)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源