论文标题
神经文本生成的对比框架
A Contrastive Framework for Neural Text Generation
论文作者
论文摘要
文本生成对于许多自然语言处理应用至关重要。但是,基于最大化的解码方法(例如,神经语言模型的光束搜索)通常会导致解析解决方案 - 生成的文本是不自然的,并且包含不良的重复。现有方法通过采样或修改训练目标引入随机性,以降低某些令牌的概率(例如,不可能培训)。但是,它们通常会导致缺乏连贯性的解决方案。在这项工作中,我们表明,模型变性的根本原因是令牌表示的各向异性分布。我们提出了一种对比解决方案:(i)SIMCTG,是校准模型表示空间的对比训练目标,以及(ii)一种解码方法 - 对比度搜索 - 以鼓励多样性,同时在生成的文本中保持一致性。对两种语言的三个基准测试的广泛实验和分析表明,我们提出的方法显着优于人类和自动指标评估的当前最新文本生成方法。
Text generation is of great importance to many natural language processing applications. However, maximization-based decoding methods (e.g. beam search) of neural language models often lead to degenerate solutions -- the generated text is unnatural and contains undesirable repetitions. Existing approaches introduce stochasticity via sampling or modify training objectives to decrease probabilities of certain tokens (e.g., unlikelihood training). However, they often lead to solutions that lack coherence. In this work, we show that an underlying reason for model degeneration is the anisotropic distribution of token representations. We present a contrastive solution: (i) SimCTG, a contrastive training objective to calibrate the model's representation space, and (ii) a decoding method -- contrastive search -- to encourage diversity while maintaining coherence in the generated text. Extensive experiments and analyses on three benchmarks from two languages demonstrate that our proposed approach significantly outperforms current state-of-the-art text generation methods as evaluated by both human and automatic metrics.