论文标题

分析性,排名一个扰动和左光谱的不变性

Analyticity, rank one perturbations and the invariance of the left spectrum

论文作者

Chavan, Sameer, Ghara, Soumitra, Pramanick, Paramita

论文摘要

我们解决了分析运算符的等级第一扰动的分析性问题。如果$ \ mathscr m_z $是功能性的Hilbert Space $ \ Mathscrh_κ$和$ f \ in \ Mathscr H $的乘法运算符,则$ f(0)= 0,$ \ then $ \ Mathsscr m_z + f \ otimes 1 $始终分析。如果$ f(0)\ neq 0,$,则$ \ mathscr m_z + f \ otimes 1 $的分析性是根据成员的成员资格来特征的一种扰动。 In particular, we show that the left spectrum $σ_l(T + f \otimes g)$ of the rank one perturbation $T + f \otimes g,$ $\,g \in \ker(T^*),$ of a cyclic analytic left invertible bounded linear operator $T$ coincides with the left spectrum of $T$ except the point $ \ inp {f} {g}。$一般而言,点$ \ inp {f} {g} {g} $可能或不属于$σ_l(t + f \ otimes g)。但是,如果它属于$σ_l(t + f \ otimes g f \ otimies g backslash ipplash iplaime of phackslash ipl of plastslave) \ otimes g。$

We address the question of the analyticity of a rank one perturbation of an analytic operator. If $\mathscr M_z$ is the bounded operator of multiplication by $z$ on a functional Hilbert space $\mathscr H_κ$ and $f \in \mathscr H$ with $f(0)=0,$ then $\mathscr M_z + f \otimes 1$ is always analytic. If $f(0) \neq 0,$ then the analyticity of $\mathscr M_z + f \otimes 1$ is characterized in terms of the membership to $\mathscr H_κ$ of the formal power series obtained by multiplying $f(z)$ by $\frac{1}{f(0)-z}.$ As an application, we discuss the problem of the invariance of the left spectrum under rank one perturbation. In particular, we show that the left spectrum $σ_l(T + f \otimes g)$ of the rank one perturbation $T + f \otimes g,$ $\,g \in \ker(T^*),$ of a cyclic analytic left invertible bounded linear operator $T$ coincides with the left spectrum of $T$ except the point $\inp{f}{g}.$ In general, the point $\inp{f}{g}$ may or may not belong to $σ_l(T + f \otimes g).$ However, if it belongs to $σ_l(T + f \otimes g) \backslash \{0\},$ then it is a simple eigenvalue of $T + f \otimes g.$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源