论文标题

感知意识栖息在具有多旋转器的电力线上

Perception-Aware Perching on Powerlines with Multirotors

论文作者

Paneque, Julio L., de Dios, Jose Ramiro Martínez, Hanover, Aníbal Ollero. Drew, Sun, Sihao, Romero, Ángel, Scaramuzza, Davide

论文摘要

多电流空中机器人广泛用于检查电线。为了在不进行人工干预的情况下进行连续,可靠的检查,机器人必须能够栖息在电线上以充电电池。高度通用的栖息功能是必要的,以适应真实Powerline系统中存在的各种配置和约束。本文介绍了一种新颖的栖息轨迹生成框架,该框架计算知觉感知,无碰撞且动态可行的操作,以引导机器人达到所需的最终状态。通过使用原始偶发点方法解决非线性编程问题,可以实现轨迹生成。该问题将机器人的完整动态模型视为单个转子推力,并最大程度地减少最终姿势和速度误差,同时避免碰撞并最大程度地提高操纵期间动力线的可见性。生成的演习既考虑栖息地和后恢复轨迹。该框架采用了由电力线的有效数学表示定义的成本和约束,从而在资源受限的硬件中在线执行。该方法在板上验证了敏捷的四极管进行电源线检查和各种栖息的操作,最终音高值最高为180度。已开发的代码可在线提供:https://github.com/grvcperception/pa_powerline_perching

Multirotor aerial robots are becoming widely used for the inspection of powerlines. To enable continuous, robust inspection without human intervention, the robots must be able to perch on the powerlines to recharge their batteries. Highly versatile perching capabilities are necessary to adapt to the variety of configurations and constraints that are present in real powerline systems. This paper presents a novel perching trajectory generation framework that computes perception-aware, collision-free, and dynamically-feasible maneuvers to guide the robot to the desired final state. Trajectory generation is achieved via solving a Nonlinear Programming problem using the Primal-Dual Interior Point method. The problem considers the full dynamic model of the robot down to its single rotor thrusts and minimizes the final pose and velocity errors while avoiding collisions and maximizing the visibility of the powerline during the maneuver. The generated maneuvers consider both the perching and the posterior recovery trajectories. The framework adopts costs and constraints defined by efficient mathematical representations of powerlines, enabling online onboard execution in resource-constrained hardware. The method is validated on-board an agile quadrotor conducting powerline inspection and various perching maneuvers with final pitch values of up to 180 degrees. The developed code is available online at: https://github.com/grvcPerception/pa_powerline_perching

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源