论文标题
MPHIA单个数据集的因果结构学习
Causal Structural Learning on MPHIA Individual Dataset
论文作者
论文摘要
基于人群的艾滋病毒影响评估(PHIA)是一个正在进行的项目,该项目正在进行全国代表性的艾滋病毒指导调查,以衡量国家和区域进步,以实现UNAID的90-90-90目标,这是结束HIV流行的主要策略。我们认为,PHIA调查提供了一个独特的机会,可以更好地理解推动撒哈拉以南非洲最受影响国家的艾滋病毒流行病的关键因素。在本文中,我们提出了一种新颖的因果结构学习算法,以发现90-90-90目标的重要协变量和潜在的因果途径。现有的基于约束的因果结构学习算法在边缘去除方面非常积极。提出的算法保留了有关重要特征和潜在因果途径的更多信息。它应用于马拉维PHIA(MPHIA)数据集,并带来有趣的结果。例如,它发现年龄和避孕套的用法对于女性艾滋病毒意识很重要。性伴侣对男性艾滋病毒意识很重要;并且了解艾滋病毒护理设施的旅行时间会导致对女性和男性受到治疗的机会更高。我们进一步使用BIC并使用Monte Carlo模拟来比较和验证所提出的算法,并表明所提出的算法在对现有算法的重要特征发现中实现了真正的正速率的提高。
The Population-based HIV Impact Assessment (PHIA) is an ongoing project that conducts nationally representative HIV-focused surveys for measuring national and regional progress toward UNAIDS' 90-90-90 targets, the primary strategy to end the HIV epidemic. We believe the PHIA survey offers a unique opportunity to better understand the key factors that drive the HIV epidemics in the most affected countries in sub-Saharan Africa. In this article, we propose a novel causal structural learning algorithm to discover important covariates and potential causal pathways for 90-90-90 targets. Existing constrained-based causal structural learning algorithms are quite aggressive in edge removal. The proposed algorithm preserves more information about important features and potential causal pathways. It is applied to the Malawi PHIA (MPHIA) data set and leads to interesting results. For example, it discovers age and condom usage to be important for female HIV awareness; the number of sexual partners to be important for male HIV awareness; and knowing the travel time to HIV care facilities leads to a higher chance of being treated for both females and males. We further compare and validate the proposed algorithm using BIC and using Monte Carlo simulations, and show that the proposed algorithm achieves improvement in true positive rates in important feature discovery over existing algorithms.