论文标题

D2ADA:语义分割的动态密度感知的活动域适应

D2ADA: Dynamic Density-aware Active Domain Adaptation for Semantic Segmentation

论文作者

Wu, Tsung-Han, Liou, Yi-Syuan, Yuan, Shao-Ji, Lee, Hsin-Ying, Chen, Tung-I, Huang, Kuan-Chih, Hsu, Winston H.

论文摘要

在域适应领域,模型性能与目标域注释的数量之间存在权衡。积极的学习,最大程度地提高了模型性能,几乎没有信息的标签数据,以派上用场。在这项工作中,我们提出了D2ADA,这是用于语义分割的一般活动域的适应框架。为了使模型以最小查询标签调整到目标域,我们建议获取目标域中概率密度高的样品的标签,但源域中的概率密度较低,与现有源域标记的数据互补。为了进一步提高标签效率,我们设计了动态的调度策略,以随着时间的推移调整域探索与模型不确定性之间的标签预算。广泛的实验表明,我们的方法的表现优于现有的主动学习和域适应基线,这是两个基准测试的GTA5-> CityScapes和Synthia-> CityScapes。对于目标域注释不到5%,我们的方法与完全监督的结果可比结果。我们的代码可在https://github.com/tsunghan-wu/d2ada上公开获取。

In the field of domain adaptation, a trade-off exists between the model performance and the number of target domain annotations. Active learning, maximizing model performance with few informative labeled data, comes in handy for such a scenario. In this work, we present D2ADA, a general active domain adaptation framework for semantic segmentation. To adapt the model to the target domain with minimum queried labels, we propose acquiring labels of the samples with high probability density in the target domain yet with low probability density in the source domain, complementary to the existing source domain labeled data. To further facilitate labeling efficiency, we design a dynamic scheduling policy to adjust the labeling budgets between domain exploration and model uncertainty over time. Extensive experiments show that our method outperforms existing active learning and domain adaptation baselines on two benchmarks, GTA5 -> Cityscapes and SYNTHIA -> Cityscapes. With less than 5% target domain annotations, our method reaches comparable results with that of full supervision. Our code is publicly available at https://github.com/tsunghan-wu/D2ADA.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源