论文标题

建筑中连接器定量建模的正式代数方法

A formal algebraic approach for the quantitative modeling of connectors in architectures

论文作者

Fountoukidou, Christina Chrysovalanti, Pittou, Maria

论文摘要

在本文中,我们提出了定量设置中连接器的代数形式化,以解决其在基于组件的系统架构中的非功能功能。首先,我们在一组端口和一个交互式和屈服的半段上提出了一个加权代数,事实证明,这足以在加权设置中对众所周知的协调方案进行建模。反过来,我们研究了一组端口上的连接器的加权代数和交换性和势力的半度性,该端口将相互作用的加权代数扩展到编码Rendezvous和广播同步的类型。我们通过对几种协调方案的加权连接器进行建模来显示代数的表现力。此外,我们得出了两个亚代词,即同步的加权代数和触发器的加权代数,并研究其特性。最后,我们在加权设置中介绍了连接器的一致性关系的概念,并提供了证明这种一致性的条件。

In this paper we propose an algebraic formalization of connectors in the quantitative setting, in order to address their non-functional features in architectures of component-based systems. We firstly present a weighted Algebra of Interactions over a set of ports and a commutative and idempotent semiring, which is proved sufficient for modeling well-known coordination schemes in the weighted setup. In turn, we study a weighted Algebra of Connectors over a set of ports and a commutative and idempotent semiring, which extends the weighted Algebra of Interactions with types that encode Rendezvous and Broadcast synchronization. We show the expressiveness of the algebra by modeling the weighted connectors of several coordination schemes. Moreover, we derive two subalgebras, namely the weighted Algebra of Synchrons and the weighted Algebra of Triggers, and study their properties. Finally, we introduce a concept of congruence relation for connectors in the weighted setup and we provide conditions for proving such a congruence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源