论文标题

通过模态分析PMU数据的机器学习框架

A Machine Learning Framework for Event Identification via Modal Analysis of PMU Data

论文作者

Bazargani, Nima T., Dasarathy, Gautam, Sankar, Lalitha, Kosut, Oliver

论文摘要

电力系统容易出现各种事件(例如线路旅行和一代损失),而在情境意识,可靠性和安全性方面,对此类事件的实时识别至关重要。使用来自多个同步主管的测量值,即相量测量单元(PMU),我们建议通过根据模态动力学提取特征来识别事件。我们将这种基于物理的传统特征提取方法与机器学习结合在一起,以区分不同的事件类型。包括每个PMU的所有测量通道都允许利用各种功能,但还需要在高维空间上学习分类模型。为了解决此问题,实现了各种功能选择方法,以选择最佳功能子集。使用获得的功能子集,我们研究了两个众所周知的分类模型的性能,即逻辑回归(LR)和支持向量机(SVM),以识别两个数据集中的发电损失和线路跳闸事件。第一个数据集是从得克萨斯州2000-Bus合成网格中的模拟发电损失和线路跳闸事件中获得的。第二个是一个专有数据集,其标记事件是从美国的大型公用事业中获得的,涉及近500 pmus的测量。我们的结果表明,所提出的框架有望确定两种类型的事件。

Power systems are prone to a variety of events (e.g. line trips and generation loss) and real-time identification of such events is crucial in terms of situational awareness, reliability, and security. Using measurements from multiple synchrophasors, i.e., phasor measurement units (PMUs), we propose to identify events by extracting features based on modal dynamics. We combine such traditional physics-based feature extraction methods with machine learning to distinguish different event types. Including all measurement channels at each PMU allows exploiting diverse features but also requires learning classification models over a high-dimensional space. To address this issue, various feature selection methods are implemented to choose the best subset of features. Using the obtained subset of features, we investigate the performance of two well-known classification models, namely, logistic regression (LR) and support vector machines (SVM) to identify generation loss and line trip events in two datasets. The first dataset is obtained from simulated generation loss and line trip events in the Texas 2000-bus synthetic grid. The second is a proprietary dataset with labeled events obtained from a large utility in the USA involving measurements from nearly 500 PMUs. Our results indicate that the proposed framework is promising for identifying the two types of events.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源