论文标题

多片铃的自我测试的优雅证明

An elegant proof of self-testing for multipartite Bell inequalities

论文作者

Panwar, Ekta, Pandya, Palash, Wieśniak, Marcin

论文摘要

量子理论的预测与局部 - 伴侣的解释不相容。这种现象被称为贝尔非本地性,并因违反贝尔Qualities而见证了。最大程度地违反了某些铃铛,只能以本质上独特的方式获得。此功能称为自我测试,构成了量子设备认证的最准确形式。虽然对二分钟场景中的自我测试进行了彻底的研究,但在更复杂的多部分铃铛场景中进行自我测试仍然在很大程度上没有探索。这项工作提出了一个简单且广泛适用的自我测试论点,该论点是N-Partite相关性的铃铛不平等,每个党派有两个二元结果可观察到。我们的证明技术构成了Mayer-yao配方的概括,并且不仅限于线性钟形质量,这与通常的平方方法总和不同。为了展示我们的证明技术的多功能性,我们获得了n派对的梅尔明 - 阿德哈利·贝林斯基 - 吉利斯科(MABK)和werner-wolf-weinfurter-ëukowskowski-brukner(www ww该B)线性铃铛家庭的自我测试陈述(MABK)和Ufffink bell-ufffink的家族。

The predictions of quantum theory are incompatible with local-causal explanations. This phenomenon is called Bell non-locality and is witnessed by violation of Bell-inequalities. The maximal violation of certain Bell-inequalities can only be attained in an essentially unique manner. This feature is referred to as self-testing and constitutes the most accurate form of certification of quantum devices. While self-testing in bipartite Bell scenarios has been thoroughly studied, self-testing in the more complex multipartite Bell scenarios remains largely unexplored. This work presents a simple and broadly applicable self-testing argument for N-partite correlation Bell inequalities with two binary outcome observables per party. Our proof technique forms a generalization of the Mayer-Yao formulation and is not restricted to linear Bell-inequalities, unlike the usual sum of squares method. To showcase the versatility of our proof technique, we obtain self-testing statements for N party Mermin-Ardehali-Belinskii-Klyshko (MABK) and Werner-Wolf-Weinfurter-Żukowski-Brukner (WWWŻB) family of linear Bell inequalities, and Uffink's family of N party quadratic Bell-inequalities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源