论文标题

干草堆中的针头:4d $ \ Mathcal {n} = 2 $ scfts的分类算法方法

Needles in a haystack: An algorithmic approach to the classification of 4d $\mathcal{N}=2$ SCFTs

论文作者

Kaidi, Justin, Martone, Mario, Rastelli, Leonardo, Weaver, Mitch

论文摘要

有一个众所周知的地图,从4D $ \ MATHCAL {N} = 2 $ SUPERCON-CONSURAL FIELD THEERY(SCFTS)到2D顶点操作员代数(VOAS)。 4D Schur指数对应于VOA真空特征,并且必须是具有模块化微分方程的积分系数的解决方案。这暗示了4D $ \ MATHCAL {N} = 2 $ scfts的分类程序,该程序从模块化微分方程开始,并通过强加4D $ \至$ 2D地图的所有已知约束来进行进行。一旦指定了模块化微分方程的$ \ mathrm {\ textit {order}} $,该程序就会完全变为算法。作为概念的证明,我们将算法应用于秩-2 $ \ MATHCAL {n} = 2 $ scfts的研究,其Schur索引满足了四阶未twist的模块化微分方程。在大量推定的情况下进行扫描,只有15个满足了我们算法施加的所有约束,其中6种对应于已知的4D SCFT。更复杂的约束可以用来反对其余九种情况的存在。总的来说,这表明我们对这种排名两的知识非常完整。

There is a well-known map from 4d $\mathcal{N}=2$ superconformal field theories (SCFTs) to 2d vertex operator algebras (VOAs). The 4d Schur index corresponds to the VOA vacuum character, and must be a solution with integral coefficients of a modular differential equation. This suggests a classification program for 4d $\mathcal{N}=2$ SCFTs that starts with modular differential equations and proceeds by imposing all known constraints that follow from the 4d $\to$ 2d map. This program becomes fully algorithmic once one specifies the $\mathrm{\textit{order}}$ of the modular differential equation and the $\mathrm{\textit{rank}}$ (complex dimension of the Coulomb branch) of the $\mathcal{N}=2$ theory. As a proof of concept, we apply the algorithm to the study of rank-two $\mathcal{N}=2$ SCFTs whose Schur indices satisfy a fourth-order untwisted modular differential equation. Scanning over a large number of putative cases, only 15 satisfy all of the constraints imposed by our algorithm, six of which correspond to known 4d SCFTs. More sophisticated constraints can be used to argue against the existence of the remaining nine cases. Altogether, this indicates that our knowledge of such rank-two SCFTs is surprisingly complete.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源