论文标题

几何型二元性

Geometry-Kinematics Duality

论文作者

Cheung, Clifford, Helset, Andreas, Parra-Martinez, Julio

论文摘要

我们提出了几何形状和运动学之间的映射,这意味着任何无质量玻色子理论的经典等效性(包括旋转和表现出任意衍生物或潜在相互作用) - 非线性sigma模型(NLSM)在田间空间中具有动量依赖性度量的非线性Sigma模型(NLSM)。从这个运动学指标中,我们构建了相应的运动学连接,协方差衍生物和曲率,所有这些连接在一般磁场重新定义下,甚至包括衍生物。我们明确地展示了无质量玻色子的所有树水平的壳散射幅度如何通过用运动学代替几何形状等于NLSM的均等。最后,我们描述了最近引入的NLSM的几何软定理,该定理如何普遍编码所有领先和旋转的软标度定理,也捕获了软光子定理。

We propose a mapping between geometry and kinematics that implies the classical equivalence of any theory of massless bosons -- including spin and exhibiting arbitrary derivative or potential interactions -- to a nonlinear sigma model (NLSM) with a momentum-dependent metric in field space. From this kinematic metric we construct a corresponding kinematic connection, covariant derivative, and curvature, all of which transform appropriately under general field redefinitions, even including derivatives. We show explicitly how all tree-level on-shell scattering amplitudes of massless bosons are equal to those of the NLSM via the replacement of geometry with kinematics. Lastly, we describe how the recently introduced geometric soft theorem of the NLSM, which universally encodes all leading and subleading soft scalar theorems, also captures the soft photon theorems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源